The Adenoviral Oncogene E1A-13S Interacts with a Specific Isoform of the Tumor Suppressor PML To Enhance Viral Transcription (original) (raw)
Related papers
Oncogene, 2007
C-terminal-binding protein interacting protein (CtIP) was first isolated as a binding partner of C-terminal-binding protein (CtBP). It is considered to contribute to the transcriptional repression and cell cycle regulatory properties of the retinoblastoma (Rb) family of proteins and to have a role in the cellular response to DNA damage. Here, we have shown that CtIP is a novel target for the adenovirus oncoprotein early region 1A (AdE1A). AdE1A associates with CtIP in both Ad5E1-transformed cells and Ad5-infected cells and binds directly in glutathione-S-transferase pull-down assays. Two binding sites have been mapped on Ad5E1A-the N-terminal a-helical region (residues 1-30) and conserved region 3 (CR3)-the transcriptional activation domain. CtIP can bind AdE1A and CtBP independently, raising the possibility that ternary complexes exist in Ad-transformed and-infected cells. Significantly, reduction of CtIP expression with small interfering RNAs results in reduction of the ability of a Gal4 DNA-binding domain-CR3 construct to transactivate a Gal 4-responsive luciferase reporter and this effect is reversed by reduction of CtBP expression. Therefore, in this model, CtIP acts as a transcriptional co-activator of AdE1A when dissociated from CtBP, through the action of AdE1A. These data are consistent with observations that CtIP expression is induced by AdE1A during viral infection and that reduction of CtIP expression with RNA interference can retard virus replication. In addition, AdE1A causes disruption of the CtIP/Rb complex during viral infection by its interaction with CtIP, possibly contributing to transcriptional derepression.
Journal of Virology, 2013
The adenovirus large E1A (L-E1A) protein is a prototypical transcriptional activator, and it functions through the action of a conserved transcriptional activation domain, CR3. CR3 interacts with a mediator subunit, MED23, that has been linked to the transcriptional activity of CR3. Our unbiased proteomic analysis revealed that human adenovirus 5 (HAdv5) L-E1A was associated with many mediator subunits. In MED23-depleted cells and in Med23 knockout (KO) cells, L-E1A was deficient in association with other mediator subunits, suggesting that MED23 links CR3 with the mediator complex. Short interfering RNA (siRNA)-mediated depletion of several mediator subunits suggested differential effects of various subunits on transcriptional activation of HAdv5 early genes. In addition to MED23, mediator subunits such as MED14 and MED26 were also essential for the transcription of HAdv5 early genes. The L-E1A proteome contained MED26-associated super elongation complex. The catalytic component of the elongation complex, CDK9, was important for the transcriptional activity of L-E1A and HAdv5 replication. Our results suggest that L-E1A-mediated transcriptional activation involves a transcriptional elongation step, like HIV Tat, and constitutes a therapeutic target for inhibition of HAdv replication. FIG 3 Role of mediator subunits in HAdv5 early gene expression. (A and B) Role of Med23. (A) wt MEFs and Med23 KO MEFs were infected with HAdv5-dl312, HF-12S, or HF-13S, and the expression of different early proteins (representatives of each early transcription unit) was analyzed by Western blot analysis using Abs specific to indicated viral proteins at 6, 12, and 24 h after infection. (B) The relative levels of transcriptional activation were analyzed by real-time RT-PCR analysis of RNA extracted from infected cells collected at 24 h after infection. (C) Role of other mediator subunits. wt MEFs were transfected with pools of control siRNA or siRNA against the indicated mediator subunits. Thirty-six h after transfection, cells were infected with HAdv5-13S and expression of E2-DBP and E4-Orf4 regions was analyzed by real-time RT-PCR at 12 h after infection. The results are expressed relative to cells transfected with control siRNA.
Immunomodulatory Functions Encoded by the E3 Transcription Unit of Adenoviruses
Molecular Evolution of Viruses — Past and Present, 2000
Persistent viruses have evolved multiple strategies to escape the host immune system. One important prerequisite for ef®cient viral reproduction in the face of an ongoing immune response is prevention of premature lysis of infected cells. A number of viruses achieve this goal by interfering with antigen presentation and recognition of infected cells by cytotoxic T cells (CTL). Another viral strategy aims to block apoptosis triggered by host defense mechanisms. Both types of strategies seem to be realized by human adenoviruses (Ads). The early transcription unit E3 of Ads encodes proteins that inhibit antigen presentation by MHC class I molecules as well as apoptosis induced by tumor necrosis factor a (TNF-a) and Fas ligand (FasL). Here, we will describe the organization of the E3 regions of different Ad subgroups and compare the structure and functions of the known immunomodulatory E3 proteins.
ISRN Virology, 2014
The adenovirus type 5 (Ad5) E1B 55 kDa and E4 Orf6 proteins assemble a Cullin 5-E3 ubiquitin (Ub) ligase that targets, among other cellular proteins, p53 and the Mre11-Rad50-Nbs1 (MRN) complex for degradation. The latter is also inhibited by the E4 Orf3 protein, which promotes the recruitment of Mre11 into specific nuclear sites to promote viral DNA replication. The activities associated with the E1B 55 kDa and E4 Orf6 viral proteins depend mostly on the assembly of this E3-Ub ligase. However, E1B 55 kDa can also function as an E3-SUMO ligase, suggesting not only that regulation of cellular proteins by these viral early proteins may depend on polyubiquitination and proteasomal degradation but also that SUMOylation of target proteins may play a key role in their activities. Since Mre11 is a target of both the E1B/E4 Orf6 complex and E4 Orf3, we decided to determine whether Mre11 displayed similar properties to those of other cellular targets, in Ad5-infected cells. We have found that during Ad5-infection, Mre11 is modified by SUMO-1 and SUMO-2/3 conjugation. Unexpectedly, SUMOylation of Mre11 is not exclusively dependent on E1B 55 kDa, E4 Orf6, or E4 Orf3, rather it seems to be influenced by a molecular interplay that involves each of these viral early proteins.
Transcriptional Activation of the Adenoviral Genome Is Mediated by Capsid Protein VI
PLoS Pathogens, 2012
Gene expression of DNA viruses requires nuclear import of the viral genome. Human Adenoviruses (Ads), like most DNA viruses, encode factors within early transcription units promoting their own gene expression and counteracting cellular antiviral defense mechanisms. The cellular transcriptional repressor Daxx prevents viral gene expression through the assembly of repressive chromatin remodeling complexes targeting incoming viral genomes. However, it has remained unclear how initial transcriptional activation of the adenoviral genome is achieved. Here we show that Daxx mediated repression of the immediate early Ad E1A promoter is efficiently counteracted by the capsid protein VI. This requires a conserved PPxY motif in protein VI. Capsid proteins from other DNA viruses were also shown to activate the Ad E1A promoter independent of Ad gene expression and support virus replication. Our results show how Ad entry is connected to transcriptional activation of their genome in the nucleus. Our data further suggest a common principle for genome activation of DNA viruses by counteracting Daxx related repressive mechanisms through virion proteins.
Journal of General Virology, 2004
We have examined the subcellular localization properties of human adenovirus 2 (HAdV-2) preMu and mature Mu (pX) proteins as fusions with enhanced green fluorescence protein (EGFP). We determined that preMu is exclusively a nucleolar protein with a single nucleolar accumulation signal within the Mu sequence. In addition, we noted that both preMu-EGFP and Mu-EGFP are excluded from adenovirus DNA-binding protein (DBP)-rich replication centres in adenovirus-infected cells. Surprisingly, we observed that cells in which preMu-EGFP (but not Mu-EGFP) is transiently expressed prior to or shortly after infection with Ad2 did not express late adenovirus genes. Further investigation suggested this might be due to a failure to express pre-terminal protein (preTP) from the E2 region, despite expression of another E2 protein, DBP. Deletion mutagenesis identified a highly conserved region in the C terminus of preMu responsible for these observations. Thus our data suggest that preMu may play a role in modulating accumulation of proteins from the E2 region.
Readthrough Activation of Early Adenovirus E1b Gene Transcription
1997
In cells productively infected with adenovirus type 5, transcription is not terminated between the E1a gene and the adjacent downstream E1b gene. Insertion of the mouse b maj -globin transcription termination sequence (GGT) into the E1a coding region dramatically reduces early, but not late, E1b expression (E. Falck-Pedersen, J. Logan, T. Shenk, and J. E. Darnell, Jr., Cell 40:897-905, 1985).
Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix- associated PML bodies
The Journal of Cell Biology, 1995
The PML protein was first identified as part of a fusion product with the retinoic acid receptor (RARa), resulting from the t(15;17) chromosomal translocation associated with acute promyelocytic leukemia (APL). It has been previously demonstrated that PML, which is tightly bound to the nuclear matrix, concentrates in discrete subnuclear compartments that are disorganized in APL cells due to the expression of the PML-RARa hybrid. Here we report that adenovirus infection causes a drastic redistribution of PML from spherical nuclear bodies into fibrous structures. The product encoded by adenovirus E4-ORF3 is shown to be responsible for this reorganization and to colocalize with PML into these fibers. In addition, we demon-
Journal of Virology, 2002
The adenovirus large E1A protein activates transcription from early viral promoters by a mechanism that requires a forty amino acid zinc finger activation domain in E1A conserved region 3 (CR3). Recent results indicate that activation by a Gal4 DNA-binding domain-E1A-CR3 fusion requires an interaction between the E1A-CR3 zinc finger and the Sur2 subunit of the mammalian Mediator (of transcription) complex. Although several host proteins have been shown to bind stably to E1A proteins in adenovirus-infected and -transformed cells, an in vivo interaction with Mediator complex subunits has not been described previously. Using immunoprecipitation and gel filtration analyses of nuclear extracts prepared from HeLa cells infected with adenovirus 5 or mutants that express either large or small E1A specifically and from adenovirus 5-transformed cells, we report here that large E1A, but not small E1A, binds to Mediator complex in vivo. Only ∼1 to 10% of large E1A is bound to Mediator complex a...