Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition (original) (raw)
Related papers
Integrating Materials and Manufacturing Innovation
In this paper, phenomenological relationships are presented that permit the prediction of the plastic regime of stress–strain curves using a limited number of parameters. These relationships were obtained from both conventional (wrought + β annealed) and additively manufactured (i.e., “3D printed”) Ti-6Al-4V. Three different methods of additive manufacturing have been exploited to produce the materials, including large-volume electron beam additive manufacturing, large-volume laser hot wire additive manufacturing, and small-volume selective laser melting. The general fundamental expressions are independent not only of the additive manufacturing process, but also of a wide variety of post-deposition heat treatments, however the coefficients are specific to material states. Thus, this work demonstrates that it is possible to predict not only the ultimate tensile strength, but also the full true stress, true strain curves, if certain parameters of the material are known. In general, th...
Predicting the tensile properties of additively manufactured Ti-6Al-4V via electron beam deposition
MATEC Web of Conferences
Additively manufactured materials are gaining wide attention owing to the manufacturing benefits as it results in near net shape components. It is well known that the manufacturing processes affects the performance of the components via microstructural features and the mechanical properties. There is an urgent need to understand the processing-structure-property-performance relationship for the materials manufactures via such innovative techniques. Strategies are needed to quantify and modify the mechanical properties. This study assists to design and tailor the process parameters based on the final properties required. Current work predicts the yield strength of additively manufactured Ti-6Al-4V with different post heat treatments. A thermal model predicted by ABAQUS is fed into an implementation of Langmuir equation that predicts the chemistry which is then used in a phenomenological equation predicting the yield strength. The model is confirmed via experiments showing less than 2...
Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties
MRS Bulletin
The capabilities of metal additive manufacturing (AM) are evolving rapidly thanks to both increasing industry demand and improved scientifi c understanding of the process. This article provides an overview of AM of the Ti-6Al-4V alloy, which has essentially been used as a yardstick to gauge the capability of each metal AM process developed to date. It begins by summarizing the metal AM processes existing today. This is followed by a discussion of the macro-and microstructural characteristics, defects, and tensile and fatigue properties of AM Ti-6Al-4V by selective laser melting, laser metal deposition (both powder and wire), and selective electron-beam melting compared to non-AM Ti-6Al-4V. The tensile and fatigue properties of as-built AM Ti-6Al-4V (with machined or polished surfaces) can be made comparable, or even superior, to those of Ti-6Al-4V in the most commonly used millannealed condition. However, these properties can exhibit a large degree of scatter and are often anisotropic, affected by AM build orientations. Post-AM surface treatments or both the post-AM surface and heat treatments are necessary to ensure the minimum required properties and performance consistency. Future directions to further unlock the potential of AM of Ti-6Al-4V for superior and consistent mechanical properties are also discussed.
Materials Research Letters
To improve the mechanical properties of additively manufactured parts, specific heat treatments must be developed. Annealing of electron beam-melted Ti-6Al-4V was performed at sub-transus temperatures and followed by water quenching. Such treatments generate an α + α dual-phase microstructure. Microstructural and mechanical characterizations revealed that the heat-treated specimens show a broad range of tensile properties, depending on the fraction of martensite. The specimens treated between 850°C and 920°C exhibit an increase in strength and ductility, which is related to a remarkable hardening behavior. Work-hardening is attributed to kinematic hardening arising from the mechanical contrast between the α and α phases. IMPACT STATEMENT Innovative heat treatments leading to α + α dual-phase microstructures are developed on Ti-6Al-4V parts produced by additive manufacturing. They lead to unprecedented work-hardening capabilities for this alloy.
Materials
Simulating the additive manufacturing process of Ti-6Al-4V is very complex due to the microstructural changes and allotropic transformation occurring during its thermomechanical processing. The α -phase with a hexagonal close pack structure is present in three different forms—Widmanstatten, grain boundary and Martensite. A metallurgical model that computes the formation and dissolution of each of these phases was used here. Furthermore, a physically based flow-stress model coupled with the metallurgical model was applied in the simulation of an additive manufacturing case using the directed energy-deposition method. The result from the metallurgical model explicitly affects the mechanical properties in the flow-stress model. Validation of the thermal and mechanical model was performed by comparing the simulation results with measurements available in the literature, which showed good agreement.
MATEC Web of Conferences
The most commonly used technology among the additive manufacturing is Direct Metal Laser Sintering (DMLS). This process is based on selective laser sintering (SLS). The method gained its popularity due to the possibility of producing metal parts of any geometry, which would be difficult or impossible to obtain by the use of conventional manufacturing techniques. Materials used in the elements manufacturing process are: titanium alloys (e.g. Ti6Al4V), aluminium alloy AlSi10Mg, etc. Elements printed from Ti6Al4V titanium alloy find their application in many industries. Details produced by additive technology are often used in medicine as skeletal, and dental implants. Another example of the DMLS elements use is the aerospace industry. In this area, the additive manufacturing technology produces, i.a. parts of turbines. In addition to the aerospace and medical industries, DMLS technology is also used in motorsport for exhaust pipes or the gearbox parts. The research objects are samples...
Materials
Additively-manufactured Ti-6Al-4V (Ti64) exhibits high strength but in some cases inferior elongation to those of conventionally manufactured materials. Post-processing of additively manufactured Ti64 components is investigated to modify the mechanical properties for specific applications while still utilizing the benefits of the additive manufacturing process. The mechanical properties and fatigue resistance of Ti64 samples made by electron beam melting were tested in the as-built state. Several heat treatments (up to 1000 °C) were performed to study their effect on the microstructure and mechanical properties. Phase content during heating was tested with high reliability by neutron diffraction at Los Alamos National Laboratory. Two different hot isostatic pressings (HIP) cycles were tested, one at low temperature (780 °C), the other is at the standard temperature (920 °C). The results show that lowering the HIP holding temperature retains the fine microstructure (~1% β phase) and ...
Materials, 2020
Due to the rapid cooling and directional heat flow inherent in metal-based additive manufacturing, Ti-6Al-4V results in epitaxial grain growth and a fiber texture of the prior β phase. While Ti-6Al-4V produced via powder bed, electron beam melted processing can exhibit a range of strength characteristics, recent studies have shown superior strength properties, compared to similar orientations, of conventional plate material (AMS 4911) across a range of elevated temperatures (204 to 371 °C). To investigate this phenomenon, a series of crystal plasticity models was developed for the representative grain structures of Ti-6Al-4V to rationalize if the columnar, fiber texture produced by additive manufacturing (AM) was sufficient to explain the observed strength attributes. As a first step towards understanding this behavior, the grain structure was characterized via electron backscattering diffraction for AM material taken from four specimens (with different build directions), as well as...