Leprosy and the Adaptation of Human Toll-Like Receptor 1 (original) (raw)
Related papers
Polymorphisms in Toll-like receptor 4 ( TLR4 ) are associated with protection against leprosy
European Journal of Clinical Microbiology & Infectious Diseases, 2009
Accumulating evidence suggests that polymorphisms in Toll-like receptors (TLRs) influence the pathogenesis of mycobacterial infections, including leprosy, a disease whose manifestations depend on host immune responses. Polymorphisms in TLR2 are associated with an increased risk of reversal reaction, but not susceptibility to leprosy itself. We examined whether polymorphisms in TLR4 are associated with susceptibility to leprosy in a cohort of 441 Ethiopian leprosy patients and 197 healthy controls. We found that two single nucleotide polymorphisms (SNPs) in TLR4 (896G>A [D299G] and 1196C>T [T399I]) were associated with a protective effect against the disease. The 896GG, GA and AA genotypes were found in 91.7, 7.8 and 0.5% of leprosy cases versus 79.9, 19.1 and 1.0% of controls, respectively (odds ratio [OR] = 0.34, 95% confidence interval [CI] 0.20–0.57, P < 0.001, additive model). Similarly, the 1196CC, CT and TT genotypes were found in 98.1, 1.9 and 0% of leprosy cases versus 91.8, 7.7 and 0.5% of controls, respectively (OR = 0.16, 95% CI 0.06-–.40, P < 0.001, dominant model). We found that Mycobacterium leprae stimulation of monocytes partially inhibited their subsequent response to lipopolysaccharide (LPS) stimulation. Our data suggest that TLR4 polymorphisms are associated with susceptibility to leprosy and that this effect may be mediated at the cellular level by the modulation of TLR4 signalling by M. leprae.
The TLR1 gene is associated with higher protection from leprosy in women
PloS one, 2018
Leprosy is an infectious disease with a complex genetic and immunological background. Polymorphisms in genes that encode cytokines and receptors involved in the immune response, such as the Toll-like receptor 1 (TLR1), may be associated with disease risk. We hypothesized that polymorphisms in innate immunity genes confer susceptibility to leprosy that differs between women and men. In this study, we investigate sex differences in the association between a single nucleotide polymorphism (SNP) in TLR1 and Nucleotide-binding oligomerization domain containing 2 (NOD2) genes and leprosy susceptibility in 256 clinically classified leprosy patients and 233 control subjects in a Brazilian population. Our results showed no association between the SNP rs8057341 in NOD2 and leprosy in this population. However, the heterozygous genotype of the TLR1 SNP (rs4833095) showed a statistically significant association in women (OR = 0.54, P = 0.02). Our findings suggest that the TLR1 polymorphism was a...
PLOS Neglected Tropical Diseases, 2008
Toll-like receptors (TLRs) are important regulators of the innate immune response to pathogens, including Mycobacterium leprae, which is recognized by TLR1/2 heterodimers. We previously identified a transmembrane domain polymorphism, TLR1_T1805G, that encodes an isoleucine to serine substitution and is associated with impaired signaling. We hypothesized that this TLR1 SNP regulates the innate immune response and susceptibility to leprosy. In HEK293 cells transfected with the 1805T or 1805G variant and stimulated with extracts of M. leprae, NF-kB activity was impaired in cells with the 1805G polymorphism. We next stimulated PBMCs from individuals with different genotypes for this SNP and found that 1805GG individuals had significantly reduced cytokine responses to both whole irradiated M. leprae and cell wall extracts. To investigate whether TLR1 variation is associated with clinical presentations of leprosy or leprosy immune reactions, we examined 933 Nepalese leprosy patients, including 238 with reversal reaction (RR), an immune reaction characterized by a Th1 T cell cytokine response. We found that the 1805G allele was associated with protection from RR with an odds ratio (OR) of 0.51 (95% CI 0.29-0.87, p = 0.01). Individuals with 1805 genotypes GG or TG also had a reduced risk of RR in comparison to genotype TT with an OR of 0.55 (95% CI 0.31-0.97, p = 0.04). To our knowledge, this is the first association of TLR1 with a Th1-mediated immune response. Our findings suggest that TLR1 deficiency influences adaptive immunity during leprosy infection to affect clinical manifestations such as nerve damage and disability. Citation: Misch EA, Macdonald M, Ranjit C, Sapkota BR, Wells RD, et al. (2008) Human TLR1 Deficiency Is Associated with Impaired Mycobacterial Signaling and Protection from Leprosy Reversal Reaction. PLoS Negl Trop Dis 2(5): e231.
Toll‐Like Receptor 2 (TLR2) Polymorphisms Are Associated with Reversal Reaction in Leprosy
The Journal of Infectious Diseases, 2008
Background-Leprosy is characterized by a spectrum of clinical manifestations that depend on the type of immune response against the pathogen. Patients may undergo immunological changes known as "reactional states" (reversal reaction and erythema nodosum leprosum) that result in major clinical deterioration. The goal of the present study was to assess the effect of Toll-like receptor 2 (TLR2) polymorphisms on susceptibility to and clinical presentation of leprosy.
Memórias do Instituto Oswaldo Cruz, 2017
BACKGROUND Leprosy or hansen's disease is a spectral disease whose clinical forms mostly depends on host's immune and genetic factors. Different Toll-like receptors (TLR) variants have been described associated with leprosy, but with some lack of replication across different populations. OBJECTIVES To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. METHODS Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551), TLR2 (rs7656411, rs3804099) and TLR4 (rs1927914, rs1927911). A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA) test in the serum of a subgroup of patients with and without leprosy reactions. FINDINGS Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR) = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2). Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. MAIN CONCLUSIONS All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host's production of key cytokines and chemokines involved in the pathogenesis of this disease.
Clinical Study Role of Toll-Interacting Protein Gene Polymorphisms in Leprosy Mexican Patients
Background. Leprosy is a debilitating infectious disease of human skin and nerves. Genetics factors of the host play an important role in the disease susceptibility. Toll-interacting protein (TOLLIP) is an inhibitory adaptor protein within the toll-like receptor (TLR) pathway, which recognizes structurally conserved molecular patterns of microbial pathogens, initiating immune responses. The objective of this study was to investigate the association of variants in the TOLLIP gene with susceptibility to leprosy in Mexican patients. Methods. TOLLIP polymorphisms were studied using a case-control design of Mexican patients with lepromatous leprosy (LL). The polymorphisms of TOLLIP at loci −526 C>G (rs5743854), 1309956C>T (rs3750920), 1298430C>A (rs5744015), and 1292831 G>A (rs3750919) were analyzed by PCR, with sequence-specific primers in LL patients and healthy subjects (HS) as controls. Results. Genotype distributions were in Hardy Weinberg equilibrium for all sites except for rs3750920. Neither genotype nor allele frequencies were statistically different between LL patients and controls (í µí± > 0.05). The maximum pairwise D' coefficient reached was 0.44 of linkage (í µí± = 0.01) for all the polymorphisms except for rs5743854. The three loci haplotype comparison yielded no significant differences between groups. Conclusions. Just the individuals with genotype C/C of rs3750920 have a trend of protective effect to developing LL.