fMRI responses to Jung's Word Association Test: implications for theory, treatment and research (original) (raw)
Related papers
Functional magnetic resonance imaging (fMRI) item analysis of empathy and theory of mind
Human Brain Mapping
In contrast to conventional functional magnetic resonance imaging (fMRI) analysis across participants, item analysis allows generalizing the observed neural response patterns from a specific stimulus set to the entire population of stimuli. In the present study, we perform an item analysis on an fMRI paradigm (EmpaToM) that measures the neural correlates of empathy and Theory of Mind (ToM). The task includes a large stimulus set (240 emotional vs. neutral videos to probe empathic responding and 240 ToM or factual reasoning questions to probe ToM), which we tested in two large participant samples (N = 178, N = 130). Both, the empathy-related network comprising anterior insula, anterior cingulate/dorsomedial prefrontal cortex, inferior frontal gyrus, and dorsal temporoparietal junction/supramarginal gyrus (TPJ) and the ToM related network including ventral TPJ, superior temporal gyrus, temporal poles, and anterior and posterior midline regions, were observed across participants and items. Regression analyses confirmed that these activations are predicted by the empathy or ToM condition of the stimuli, but not by low-level features such as video length, number of words, syllables or syntactic complexity. The item analysis also allowed for the selection of the most effective items to create optimized stimulus sets that provide the most stable and reproducible results. Finally, reproducibility was shown in the replication of all analyses in the second participant sample. The data demonstrate (a) the generalizability of empathy and ToM related neural activity and (b) the reproducibility of the EmpaToM task and its applicability in intervention and clinical imaging studies.
Functional Brain Imagery and Jungian Analytical Psychology: An Interesting Dance?
Neuroimaging [Working Title]
Jung's original neuroscience research project looked at the neurophysiological responses to the word association test (WAT) in an effort to understand 'complexes' , those emotionally laden fixations that bother us all, and can be inferred from certain painful responses in the WAT. He measured breathing rates, skin conductance and electrocardiography, but there was no brain functional imaging technology available at the time. One hundred years later, a wide range of brain functional technologies are available, and this chapter describes two studies in which the WAT was performed under functional magnetic resonance imaging and quantitative electroencephalography conditions. In essence, a complexed response first activates the amygdala (many right-sided). This is followed in the next 3 s by bilateral brain activity in the anterior insula, the supplementary motor area and the dorsal cingulum; the premotor mirror neuron areas, the so-called resonance circuitry, which is central to mindfulness (awareness of self) and empathy (sense of the other), negotiations between self-awareness and the 'internal other' , and has been well described by Dan Siegel. But over the following 2 s, activity shifts to the left hemisphere, seemingly the way the brain deals with a complex in the moment, possibly to dull the pain of the complexed response.
Neuroimage, 2006
Theory of Mind (ToM), the ability to attribute mental states to others, and empathy, the ability to infer emotional experiences, are important processes in social cognition. Brain imaging studies in healthy subjects have described a brain system involving medial prefrontal cortex, superior temporal sulcus and temporal pole in ToM processing. Studies investigating networks associated with empathic responding also suggest involvement of temporal and frontal lobe regions. In this fMRI study, we used a cartoon task derived from [Sarfati, Y., Hardy-Bayle, M.C., Besche, C., Widlocher, D. 1997. Attribution of intentions to others in people with schizophrenia: a non-verbal exploration with comic strips. Schizophrenia Research 25,[199][200][201][202][203][204][205][206][207][208][209] with both ToM and empathy stimuli in order to allow comparison of brain activations in these two processes. Results of 13 right-handed, healthy, male volunteers were included. Functional images were acquired using a 1.5 T Phillips Gyroscan. Our results confirmed that ToM and empathy stimuli are associated with overlapping but distinct neuronal networks. Common areas of activation included the medial prefrontal cortex, temporoparietal junction and temporal poles. Compared to the empathy condition, ToM stimuli revealed increased activations in lateral orbitofrontal cortex, middle frontal gyrus, cuneus and superior temporal gyrus. Empathy, on the other hand, was associated with enhanced activations of paracingulate, anterior and posterior cingulate and amygdala. We therefore suggest that ToM and empathy both rely on networks associated with making inferences about mental states of others. However, empathic responding requires the additional recruitment of networks involved in emotional processing. These results have implications for our understanding of disorders characterized by impairments of social cognition, such as autism and psychopathy. D
Talking about social conflict in the MRI scanner: Neural correlates of being empathized with
NeuroImage, 2014
This study investigated the emotional effects and neural correlates of being empathized with while speaking about a currently experienced real-life social conflict during fMRI. Specifically, we focused on the effects of cognitive empathy in the form of paraphrasing, a technique regularly used in conflict resolution. 22 participants underwent fMRI while being interviewed on their social conflict and receiving empathic or unempathic responses from the interviewer. Skin conductance response (SCR) and self-report ratings of feeling understood and emotional valence were used to assess emotional responses. Results confirm previous findings indicating that cognitive empathy exerts a positive short-term effect on emotions in social conflict, while at the same time increasing autonomic arousal reflected by SCR. Effects of paraphrasing and unempathic interventions as indicated by self-report ratings varied depending on self-esteem, pre-interview negative affect, and participants' empathy quotient. Empathic responses engaged a fronto-parietal network with activity in the right precentral gyrus (PrG), left middle frontal gyrus (MFG), left inferior parietal gyrus (IPG), and right postcentral gyrus (PoG). Processing unempathic responses involved a fronto-temporal network with clusters peaking in the left inferior frontal gyrus, pars triangularis (IFGTr), and right temporal pole (TP). A specific modeling of feeling misunderstood activated a network consisting of the IFG, left TP, left Heschl gyrus, IFGTr, and right precuneus, extending to several limbic regions, such as the insula, amygdala, putamen, and anterior cingulate cortex/right middle cingulum (ACC/MCC). The results support the effectiveness of a widely used conflict resolution technique, which may also be useful for professionals who regularly deal with and have to de-escalate situations highly charged with negative emotion, e.g. physicians or judges.
Convergent Neural Correlates of Empathy and Anxiety During Socioemotional Processing
Frontiers in Human Neuroscience, 2019
Empathy is characterized by the ability to understand and share an emotional experience with another person and is closely tied to compassion and concern for others. Consequently, this increased emotional awareness and sensitivity may also be related to increased anxiety. Taken from another perspective, higher general anxiety may translate into increased concern for others, or concern for how one's actions might affect others, and therefore may be linked to increased empathy. Furthermore, self-reflection is positively related to perspective-taking and empathic concern, while rumination is closely tied to anxiety, thus providing an additional connecting point between empathy and anxiety through enhanced internally generated thought. While previous literature suggests a relationship between empathy and anxiety, this has yet to be empirically studied using neuroimaging tools aimed at investigating the underlying neural correlates that may support these convergent responses. We therefore conducted an functional magnetic resonance imaging (fMRI) study (N = 49) in which participants viewed fearful and neutral human faces and rated how the faces made them feel, to promote introspection. Participants also completed questionnaires assessing empathy Toronto Empathy Questionnaire (TEQ), trait anxiety State Trait Anxiety Inventory (STAI), worry Penn State Worry Questionnaire (PSWQ) and rumination Ruminative Responses Scale (RRS). Behaviorally, empathy positively correlated with worry, worry and rumination positively correlated with anxiety, and significant indirect relationships were found between empathy and anxiety through worry and rumination. Using the neuroimaging face processing task as a backdrop on which the neurobiological mechanisms of empathy and anxiety may interact, regressions of questionnaires with brain activations revealed that empathy related to activation in the temporoparietal junction (TPJ), anxiety related to bilateral insula activation, and worry related to medial prefrontal cortex (mPFC) activation, while rumination showed increased engagement of all three aforementioned regions. Functional connectivity (FC) analyses showed increased communication between the left amygdala and insula related to higher empathy, worry and rumination. Finally, whole-brain analysis using median split groups from questionnaires revealed that the lower halves of anxiety, worry and rumination exhibited increased activation
Journal of Psychiatric Research, 2019
Social cognition impairment predicts social functioning in schizophrenia. Several studies have found abnormal brain activation in patients with schizophrenia during social cognition tasks. Nevertheless, no coordinate-based meta-analysis comparing the neural correlates of theory of mind and empathy had been done in this population. Our aim was to explore neural correlates related to theory of mind and empathy in patients with schizophrenia compared to healthy controls, in order to identify abnormal brain activation related to emotional content during mental state attribution in schizophrenia. We performed a neural-coordinate-based Activation Likelihood Estimation (ALE) meta-analysis of existing neuroimaging data in the literature to distinguish between abnormal brain maps associated with emotional attribution and those associated with intention/belief inference. We found that brain activation in patients group was significantly decreased in the right ventrolateral prefrontal cortex (VLPFC) during emotional attribution, while there was a significant decrease in the left posterior temporoparietal junction (TPJ) during intention/belief attribution. Using a meta-analytic connectivity modeling approach (MACM), we demonstrated that both regions are coactivated with other brain regions known to play a role in social cognition, including the bilateral anterior insula, right TPJ, left amygdala and dorsolateral prefrontal cortex. In addition, abnormal activation in both the left TPJ and right VLPFC was previously reported in association with verbal-auditory hallucinations and a "jumping to conclusions" cognitive bias. Thus, these regions could be valuable targets for therapeutic interventions in schizophrenia.
2019
Self-other distinction is crucial for empathy, since it prevents the confusion of self-experienced emotions with those of others. We aimed to extend our understanding of the neurocognitive mechanisms of self-other distinction. Thirty-one female participants underwent continuous theta burst transcranial magnetic stimulation (cTBS) targeting the supramarginal gyrus (rSMG), a sub-region of the temporoparietal junction previously shown to be involved in self-other distinction, and the vertex, a cortical control site. Right after stimulation they completed a visuo-tactile empathy task in an MRI scanner. Self-other distinction performance was assessed by differences in emotion judgments and brain activity between conditions differing in the requirement for self-other distinction. Effects of rSMG-cTBS (compared to vertex cTBS) on self-other distinction depended on dispositional empathic understanding: they decreased self-other distinction in participants with lower dispositional empathic u...
Dimensional schizotypy and social cognition: an fMRI imaging study
Frontiers in behavioral neuroscience, 2015
Impairment in empathy has been demonstrated in patients with schizophrenia and individuals with psychosis proneness. In the present study, we examined the neural correlates underlying theory of mind (ToM) and empathy and the relationships between these two social cognitive abilities with schizotypy. Fifty-six first-year college students (31 males, 25 females) between 17 and 21 years of age (M = 19.3, SD = 0.9) from a medical university in China participated. All participants undertook a comic strips functional imaging task that specifically examined both empathy and ToM. In addition, they completed two self-report scales: the Chapman Psychosis Proneness scale and the Interpersonal Responsivity Index (IRI). Results showed that both empathy and ToM conditions of the task were associated with brain activity in the middle temporal gyrus, the temporo-parietal junction (TPJ), the precuneus and the posterior cingulate gyrus. In addition, we found positive correlations between negative schi...
Journal of Biosciences, 2015
Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.
Neural correlates of admiration and compassion
Proceedings of the National Academy of Sciences, 2009
In an fMRI experiment, participants were exposed to narratives based on true stories designed to evoke admiration and compassion in 4 distinct categories: admiration for virtue (AV), admiration for skill (AS), compassion for social/psychological pain (CSP), and compassion for physical pain (CPP). The goal was to test hypotheses about recruitment of homeostatic, somatosensory, and consciousnessrelated neural systems during the processing of pain-related (compassion) and non-pain-related (admiration) social emotions along 2 dimensions: emotions about other peoples' social/psychological conditions (AV, CSP) and emotions about others' physical conditions (AS, CPP). Consistent with theoretical accounts, the experience of all 4 emotions engaged brain regions involved in interoceptive representation and homeostatic regulation, including anterior insula, anterior cingulate, hypothalamus, and mesencephalon. However, the study also revealed a previously undescribed pattern within the posteromedial cortices (the ensemble of precuneus, posterior cingulate cortex, and retrosplenial region), an intriguing territory currently known for its involvement in the default mode of brain operation and in self-related/consciousness processes: emotions pertaining to social/psychological and physical situations engaged different networks aligned, respectively, with interoceptive and exteroceptive neural systems. Finally, within the anterior insula, activity correlated with AV and CSP peaked later and was more sustained than that associated with CPP. Our findings contribute insights on the functions of the posteromedial cortices and on the recruitment of the anterior insula in social emotions concerned with physical versus psychological pain.