Structural Study of Lipomannan and Lipoarabinomannan from Mycobacterium chelonae. PRESENCE OF UNUSUAL COMPONENTS WITH alpha 1,3-MANNOPYRANOSE SIDE CHAINS (original) (raw)

A single arabinan chain is attached to the phosphatidylinositol mannosyl core of the major immunomodulatory mycobacterial cell envelope glycoconjugate, lipoarabinomannan

The Journal of biological chemistry, 2014

Lipoarabinomannan (LAM) is composed of a phosphatidylinositol anchor followed by a mannan followed by an arabinan that may be capped with various motifs including oligosaccharides of mannose. A related polymer, lipomannan (LM), is composed of only the phosphatidylinositol and mannan core. Both the structure and the biosynthesis of LAM have been studied extensively. However, fundamental questions about the branching structure of LM and the number of arabinan chains on the mannan backbone in LAM remain. LM and LAM molecules produced by three different glycosyltransferase mutants of Mycobacterium smegmatis were used here to investigate these questions. Using an MSMEG_4241 mutant that lacks the α-(1,6)-mannosyltransferase used late in LM elongation, we showed that the reducing end region of the mannan that is attached to inositol has 5-7 unbranched α-6-linked-mannosyl residues followed by two or three α-6-linked mannosyl residues branched with single α-mannopyranose residues at O-2. Aft...

Structural Analysis of an Unusual Bioactive N -Acylated Lipo-Oligosaccharide LOS-IV in Mycobacterium marinum

Journal of the American Chemical Society, 2010

Although lipo-oligosaccharides (LOSs) are recognized as major parietal components in many mycobacterial species, their involvement in the host-pathogen interactions have been scarcely documented. In particular, the biological implications arising from the high degree of structural species-specificity of these glycolipids remain largely unknown. Growing recognition of the Mycobacterium marinum-Danio rerio as a specific host-pathogen model devoted to the study of the physiopathology of mycobacterial infections prompted us to elucidate the structure-to-function relationships of the elusive end-product, LOS-IV, of the LOS biosynthetic pathway in M. marinum. Combination of physicochemical and molecular modeling methods established that LOS-IV resulted from the differential transfer on the caryophyllose-containing LOS-III of a family of very unusual N-acylated monosaccharides, naturally present as different diastereoisomers. In agreement with the partial loss of pathogenecity previously reported in a LOS-IV-deficient M. marinum mutant, we demonstrated that this terminal monosaccharide conferred to LOS-IV important biological functions, including macrophage activating properties.

The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis Bacillus Calmette Guérin

Journal of Biological …, 1997

Lipoarabinomannans are major mycobacterial antigens capable of modulating the host immune response; however, the molecular basis underlying the diversity of their immunological properties remain an open question. In this study a new extraction and purification approach was successfully applied to isolate ManLAMs (lipoarabinomannans with mannosyl extensions) from bacillus Calmette Gué rin leading to the obtention of two types of ManLAMs namely parietal and cellular. Structurally, they were found to differ by the percentage of mannooligosaccharide caps, 76 and 48%, respectively, and also, thanks to a new analytical method, by the structure of the phosphatidyl-myo-inositol anchor lipid moiety. A novel fatty acid in the mycobacterium genus assigned to a 12-O-(methoxypropanoyl)-12-hydroxystearic acid was the only fatty acid esterifying C-1 of the glycerol residue of the parietal ManLAMs, while the phosphatidyl unit of the cellular ManLAMs showed a large heterogeneity due to a combination of palmitic and tuberculostearic acid. Finally, parietal and cellular ManLAMs were found to differentially affect interleukin-8 and tumor necrosis factor-␣ secretion from human dendritic cells. We show that parietal but not cellular ManLAMs were able to stimulate tumor necrosis factor-␣ secretion from dendritic cells. From these studies we propose that the 1-[12-O-(methoxypropanoyl)-12-hydroxystearoyl]-sn-glycerol part is the major cytokineregulating component of the ManLAMs. It seems likely that modification of the ManLAM lipid part, which may occur in hostile environments, could regulate macrophagic mycobacterial survival by altering cytokine stimulation.

Crystal structure of the putative cell-wall lipoglycan biosynthesis protein LmcA from Mycobacterium smegmatis

Acta Crystallographica Section D Structural Biology, 2022

The bacterial genus Mycobacterium includes important pathogens, most notably M. tuberculosis, which infects one-quarter of the entire human population, resulting in around 1.4 million deaths from tuberculosis each year. Mycobacteria, and the closely related corynebacteria, synthesize a class of abundant glycolipids, the phosphatidyl-myo-inositol mannosides (PIMs). PIMs serve as membrane anchors for hyperglycosylated species, lipomannan (LM) and lipoarabinomannan (LAM), which are surface-exposed and modulate the host immune response. Previously, in studies using the model species Corynebacterium glutamicum, NCgl2760 was identified as a novel membrane protein that is required for the synthesis of full-length LM and LAM. Here, the first crystal structure of its ortholog in Mycobacterium smegmatis, MSMEG_0317, is reported at 1.8 Å resolution. The structure revealed an elongated β-barrel fold enclosing two distinct cavities and one α-helix extending away from the β-barrel core, resemblin...

Structural study of the LipoMannans from Mycobacterium bovis BCG: characterisation of multiacylated forms of the phosphatidyl-myo-inositol anchor

Journal of Molecular Biology, 1999

A biosynthetic ®liation is postulated between the mycobacterial phosphatidyl-myo-inositol mannosides (PIMs), the lipomannans (LMs) and the lipoarabinomannans (LAMs), the major antigens of the envelopes. Moreover, as the PI anchor is thought to play a role in the biological functions of the LAMs, we characterized the lipid moiety of the PI anchor from Mycobacterium bovis BCG cellular LMs. Their structure was investigated along with that of a puri®ed tetra-acylated form of PIM 2 (Ac 4 PIM 2). A two-dimensional 1 H-31 P heteronuclear multiple quantum correlation homonuclear Hartmann-Hahn spectroscopy study of Ac 4 PIM 2 unambiguously localised a fourth fatty acid on the C3 of the myo-Ins beside the fatty acids already described on the C1 and C2 position of the glycerol and on the C6 position of the mannose. This analytical strategy was extended to the structural study of the cellular LM anchor. Using an appropriate solvent system, the one dimensional 31 P NMR spectrum exhibited four major resonances typifying the LM populations. These populations differed in number and location of the fatty acids. For one of these populations, we established the presence of an extra fatty acid on the C3 of the myo-Ins of the LM anchor. The fact that both types of molecules have an elaborated anchor in common, indicates that cellular LMs are multimannosylated forms of PIMs. In addition, the LM mannan core structure was analysed by two-dimensional NMR, pointing to a high level of branching by single a1 3 2 Manp side-chains.

Structural study of the LipoMannans from Mycobacterium bovis BCG: characterisation of multiacylated forms of the phosphatidyl- myo-inositol anchor 1 1 Edited by A. R. Fersht

Journal of Molecular Biology, 1999

A biosynthetic ®liation is postulated between the mycobacterial phosphatidyl-myo-inositol mannosides (PIMs), the lipomannans (LMs) and the lipoarabinomannans (LAMs), the major antigens of the envelopes. Moreover, as the PI anchor is thought to play a role in the biological functions of the LAMs, we characterized the lipid moiety of the PI anchor from Mycobacterium bovis BCG cellular LMs. Their structure was investigated along with that of a puri®ed tetra-acylated form of PIM 2 (Ac 4 PIM 2 ). A two-dimensional 1 H-31 P heteronuclear multiple quantum correlation homonuclear Hartmann-Hahn spectroscopy study of Ac 4 PIM 2 unambiguously localised a fourth fatty acid on the C3 of the myo-Ins beside the fatty acids already described on the C1 and C2 position of the glycerol and on the C6 position of the mannose. This analytical strategy was extended to the structural study of the cellular LM anchor. Using an appropriate solvent system, the one dimensional 31 P NMR spectrum exhibited four major resonances typifying the LM populations. These populations differed in number and location of the fatty acids. For one of these populations, we established the presence of an extra fatty acid on the C3 of the myo-Ins of the LM anchor. The fact that both types of molecules have an elaborated anchor in common, indicates that cellular LMs are multimannosylated forms of PIMs. In addition, the LM mannan core structure was analysed by two-dimensional NMR, pointing to a high level of branching by single a1 3 2 Manp side-chains.

Structural study of the LipoMannans from Mycobacterium bovis BCG: characterisation of multiacylated forms of the phosphatidyl-myo-inositol anchor1

Journal of Molecular Biology, 1999

A biosynthetic ®liation is postulated between the mycobacterial phosphatidyl-myo-inositol mannosides (PIMs), the lipomannans (LMs) and the lipoarabinomannans (LAMs), the major antigens of the envelopes. Moreover, as the PI anchor is thought to play a role in the biological functions of the LAMs, we characterized the lipid moiety of the PI anchor from Mycobacterium bovis BCG cellular LMs. Their structure was investigated along with that of a puri®ed tetra-acylated form of PIM 2 (Ac 4 PIM 2 ). A two-dimensional 1 H-31 P heteronuclear multiple quantum correlation homonuclear Hartmann-Hahn spectroscopy study of Ac 4 PIM 2 unambiguously localised a fourth fatty acid on the C3 of the myo-Ins beside the fatty acids already described on the C1 and C2 position of the glycerol and on the C6 position of the mannose. This analytical strategy was extended to the structural study of the cellular LM anchor. Using an appropriate solvent system, the one dimensional 31 P NMR spectrum exhibited four major resonances typifying the LM populations. These populations differed in number and location of the fatty acids. For one of these populations, we established the presence of an extra fatty acid on the C3 of the myo-Ins of the LM anchor. The fact that both types of molecules have an elaborated anchor in common, indicates that cellular LMs are multimannosylated forms of PIMs. In addition, the LM mannan core structure was analysed by two-dimensional NMR, pointing to a high level of branching by single a1 3 2 Manp side-chains.