An Integrated Distributed Clustering Algorithm for Large Scale WSN (original) (raw)
Latest researches in wireless communications and electronics has imposed the progress of low-cost wireless sensor nodes. Clustering is a thriving topology control approach, which can prolong the lifetime and increase scalability for wireless sensor networks. The admired criteria for clustering methodology are to select cluster heads with more residual energy and to rotate them periodically. Sensors at heavy traffic locations quickly deplete their energy resources and die much earlier, leaving behind energy hole and network partition. In this paper, a model of distributed layer-based clustering algorithm is proposed based on three concepts. First, the aggregated data is forwarded from cluster head to the base station through cluster head of the next higher layer with shortest distance between the cluster heads. Second, cluster head is elected based on the clustering factor, which is the combination of residual energy and the number of neighbors of a particular node within a cluster. Third, each cluster has a crisis hindrance node, which does the function of cluster head when the cluster head fails to carry out its work in some critical conditions. The key aim of the proposed algorithm is to accomplish energy efficiency and to prolong the network lifetime. The proposed distributed clustering algorithm is contrasted with the existing clustering algorithm LEACH.