Random Walks in a One-Dimensional Lévy Random Environment (original) (raw)
Abstract
We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (31)
- A. R. Akhmerov, C. W. J. Beenakker, C. W. Groth, Nonalgebraic length de- pendence of transmission through a chain of barriers with a Lévy spacing distribution, Phys. Rev. B 79, 024204 (2009).
- A. R. Akhmerov, C. W. J. Beenakker, C. W. Groth, Transmission probability through a Lévy glass and comparison with a Lévy walk, Phys. Rev. E 85, 021138 (2012).
- E. Barkai, V. Fleurov, J. Klafter, One-dimensional stochastic Lévy-Lorentz gas, Phys. Rev. E 61, 1164 (2000).
- P. Barthelemy, J. Bertolotti, D. S. Wiersma, A Lévy flight for light, Nature 453, 495 (2008).
- N. Berger, R. Rosenthal, Random walk on discrete point processes, Ann. Inst. Henri Poincaré Probab. Stat. 51, 727 (2015).
- P. Buonsante, R. Burioni, A. Vezzani, Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals, Phys. Rev. E 84, 021105 (2011).
- R. Burioni, L. Caniparoli, A. Vezzani, Lévy walks and scaling in quenched disordered media, Phys. Rev. E 81, 060101(R) (2010).
- R. Burioni, S. di Santo, S. Lepri, A. Vezzani, Scattering lengths and univer- sality in superdiffusive Lévy materials, Phys. Rev. E 86, 031125 (2012).
- D. L. Burkholder, Distribution function inequalities for martingales Ann. Probab. 1, 19 (1973).
- P. Caputo, A. Faggionato, Diffusivity in one-dimensional generalized Mott variable-range hopping models, Ann. Appl. Probab. 19, 1459 (2009).
- P. Caputo, A. Faggionato, A. Gaudillière, Recurrence and transience for long range reversible random walks on a random point process, Electron. J. Probab. 14, 2580 (2009).
- G. Cristadoro, T. Gilbert, M. Lenci, D. P. Sanders, Transport properties of Lévy walks: an analysis in terms of multistate processes, Europhys. Lett. 108, 50002 (2014).
- G. Cristadoro, M. Lenci, M. Seri, Recurrence for quenched random Lorentz tubes, Chaos 20, 023115 (2010).
- R. Durrett, Probability. Theory and examples. Thompson Brooks/Cole, Belmont, CA (2005).
- H. C. Fogedby, Lévy Flights in Random Environments, Phys. Rev. Lett. 73, 2517 (1994).
- B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables. Revised edition. Addison-Wesley, Reading, MA-London-Don Mills (1968).
- P. Grassberger, Velocity autocorrelations in a simple model, Physica A103, 558 (1980).
- A. Klenke, Probability Theory. Second Edition. Springer, London (2014).
- M. Lenci, Typicality of recurrence for Lorentz gases, Ergod. Theor. Dyn. Syst. 26, 799 (2006).
- M. Lenci, Central Limit Theorem and recurrence for random walks in bistochastic random environments, J. Math. Phys. 49, 125213 (2008).
- M. Lenci, Random walks in random environments without ellipticity, Stochastic Process. Appl. 123, 1750 (2013).
- A. Rousselle, Recurrence and transience of random walks on random graphs gen- erated by point processes in R d , Stochastic Process. Appl. 125, 4351 (2015).
- Lévy Flights and Related Topics in Physics. Lecture Notes in Physics 450. Edited by M. Shlesinger, G. Zaslavsky, U. Frisch. Springer-Verlag, Berlin (1995).
- B. Miller, The existence of measures of a given cocycle, I: atomless, ergodic σ-finite measures, Ergod. Theor. Dyn. Syst. 28, 1599 (2008).
- M. Schulz, Lévy flights in a quenched jump length field: a real space renormalization group approach, Phys. Lett. A 298, 105 (2002).
- H. van Beijeren, Transport properties of stochastic Lorentz models, Rev. Mod. Phys. 54, 195 (1982).
- H. van Beijeren, H. Spohn, Transport properties of the one-dimensional stochastic Lorentz Model: I. Velocity autocorrelation function, J. Stat. Phys. 31, 231 (1983).
- Anomalous Transport: Foundations and Applications. Edited by R. Klages, G. Radons, I. M. Sokolov. Wiley-VCH, Berlin (2008).
- R. Yokoyama, The convergence of moments in the central limit theorem for sta- tionary ψ-mixing processes, Anal. Math. 9, 79 (1983).
- V. Zaburdaev, S. Denisov, J. Klafter, Lévy walks, Rev. Mod. Phys. 87, 483 (2015).
- O. Zeitouni, Random walks in random environments. J. Phys. A 39, R433 (2006).