Concentration-and chromosome-organization- dependent regulator unbinding from DNA for transcription regulation in living cells (original) (raw)

Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription

Nucleic Acids Research, 2018

Intrinsic dynamics of chromatin contribute to gene regulation. How chromatin mobility responds to genomic processes, and whether this response relies on coordinated chromatin movement is still unclear. Here, we introduce an approach called Dense Flow reConstruction and Correlation (DFCC), to quantify correlation of chromatin motion with sub-pixel sensitivity at the level of the whole nucleus. DFCC reconstructs dense global flow fields of fluorescent images acquired in real-time. We applied our approach to analyze stochastic movements of DNA and histones, based on direction and magnitude at different time lags in human cells. We observe long-range correlations extending over several m between coherently moving regions over the entire nucleus. Spatial correlation of global chromatin dynamics was reduced by inhibiting elongation by RNA polymerase II, and abolished in quiescent cells. Furthermore, quantification of spatial smoothness over time intervals up to 30 s points to clear-cut boundaries between distinct regions, while smooth transitions in small (<1 m) neighborhoods dominate for short time intervals. Rough transitions between regions of coherent motion indicate directed squeezing or stretching of chromatin boundaries, suggestive of changes in local concentrations of actors regulating gene expression. The DFCC approach hence allows characterizing stochastically forming domains of nuclear activity.

Single-molecule tracking reveals two low-mobility states for chromatin and transcriptional regulators within the nucleus

ABSTRACTHow transcription factors (TFs) navigate the complex nuclear environment to assemble the transcriptional machinery at specific genomic loci remains elusive. Using single-molecule tracking, coupled with machine learning, we examined the mobility of multiple transcriptional regulators. We show that H2B and ten different transcriptional regulators display two distinct low-mobility states. Our results indicate that both states represent dynamic interactions with chromatin. Ligand activation results in a dramatic increase in the proportion of steroid receptors in the lowest mobility state. Mutational analysis revealed that only chromatin interactions in the lowest mobility state require an intact DNA-binding domain as well as oligomerization domains. Importantly, these states are not spatially separated as previously believed but in fact, individual H2B and TF molecules can dynamically switch between them. Together, our results identify two unique and distinct low-mobility states...

Concentration and Length Dependence of DNA Looping in Transcriptional Regulation

PLOS One, 2008

BACKGROUND. In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage), to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms.

Physical aspects of precision in genetic regulation

Journal of Biological Physics, 2010

The process by which transcription factors (TFs) locate specific DNA binding sites is stochastic and as such, is subject to a considerable level of noise. TFs diffuse in the three-dimensional nuclear space, but can also slide along the DNA. It was proposed that this sliding facilitates the TF molecules arriving to their binding site, by effectively reducing the dimensionality of diffusion. However, the possible implications of DNA sliding on the accuracy by which the nuclear concentration of TFs can be estimated were not examined. Here, we calculate the mean and the variance of the number of TFs that bind to their binding site in reduced and partially reduced diffusion dimensionality regimes. We find that a search process which combines three-dimensional diffusion in the nucleus with one-dimensional sliding along the DNA can reduce the noise in TF binding and in this way enables a better estimation of the TF concentration inside the nucleus.

Conformational tuning of a DNA-bound transcription factor

Nucleic Acids Research, 2019

Transcription factors are involved in many cellular processes that take place remote from their cognate DNA sequences. The efficiencies of these activities are thus in principle counteracted by high binding affinities of the factors to their cognate DNAs. Models such as facilitated diffusion or dissociation address this apparent contradiction. We show that the MYC associated transcription factor X (MAX) undergoes nanoscale conformational fluctuations in the DNA-bound state, which is consistent with facilitated dissociation from or diffusion along DNA strands by transiently reducing binding energies. An integrative approach involving EPR, NMR, crystallographic and molecular dynamics analyses demonstrates that the N-terminal domain of MAX constantly opens and closes around a bound DNA ligand thereby dynamically tuning the binding epitope and the mode of interaction.

Facilitated Dissociation of Nucleoid Associated Proteins from DNA in the Bacterial Confinement

2021

Transcription machinery ultimately depends on the temporal formation of protein-DNA complexes. Recent experimental studies demonstrate that residence time (i.e., inverse off-rate) of a transcription factor protein can be a contributor to the functional diversity of the protein. In the meantime, single-molecule experiments showed that the off-rates of a wide array of DNA-binding proteins accelerate as the bulk concentration of the protein increases via a concentration-dependent mechanism (i.e., facilitated dissociation, FD). In this study, inspired by the previous single-molecule studies on the factor for inversion stimulation (Fis) protein of E. coli, which is a dual-purpose protein with a diverse functionality, we model the unbinding of Fis from specific bindings sites along a high-molecular-weight circular DNA in a cylindrical structure mimicking the cellular confinement of chromosome. Our simulations show that FD of Fis can well occur in confinement at physiological concentrations. Particularly, when nutrient-rich conditions are emulated with Fis concentrations around micromolar levels, the off-rates increase one order of magnitude compared to the lower Fis levels. However, Fis significantly changes the chromosome structure at higher concentrations by forming dense protein clusters bridging specific sites and juxtaposing remote DNA segments. As a result, at the physiologically observed maximum levels of Fis, the off-rates significantly slow down. Overall, our results indicate that cellular-concentration levels of a structural DNA-binding protein is intermingled with the genome architecture and DNA residence times, thereby providing a basis for understanding the complex effects of dynamic protein-DNA interactions on gene regulation.

Searching target sites on DNA by proteins: Role of DNA dynamics under confinement

Nucleic acids research, 2015

DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contras...

Quantitative Transcription Factor Binding Kinetics at the Single-Molecule Level

Biophysical Journal, 2009

We investigated the binding interaction between the bacteriophage l-repressor CI and its target DNA using total internal reflection fluorescence microscopy. Large stepwise changes in the intensity of the red fluorescent protein fused to CI were observed as it associated with and dissociated from individually labeled single-molecule DNA targets. The stochastic association and dissociation were characterized by Poisson statistics. Dark and bright intervals were measured for thousands of individual events. The exponential distribution of the intervals allowed direct determination of the association and dissociation rate constants (k a and k d , respectively). We resolved in detail how k a and k d varied as a function of three control parameters: the DNA length L, the CI dimer concentration, and the binding affinity. Our results show that although interactions with nonoperator DNA sequences are observable, CI binding to the operator site is not dependent on the length of flanking nonoperator DNA.

Influence of DNA geometry on transcriptional activation in Escherichia coli

The EMBO Journal

Transcription from many Escherichia coli promoters can be activated by the cAMP-CRP complex bound at different locations upstream of the promoter. At some locations the mechanism of activation involves direct protein-protein contacts between CRP and the RNA polymerase. We positioned the CRP binding site at various distances from the transcription start site of the malT promoter and measured the in vivo activities of these promoter variants. From the activation profiles we deduce that the protein-protein interactions involved in transcriptional activation are rather rigid. A heterologous protein (IHF) that bends the DNA to a similar degree as does CRP activates transcription when bound at sites equivalent to activating positions for CRP. DNA geometry makes a major contribution to the process of transcriptional activation and DNA upstream of the activator binding site participates in this process. Removal of this DNA decreases the capacity of the malT promoter to be activated by CRP in vitro. We conclude that both DNA topology and direct protein-protein contacts contribute to transcriptional activation and that the relative importance of these two modes of activation depends on the nature of the activator and on the location of the activator binding site.