The M-Ras-RA-GEF-2-Rap1 Pathway Mediates Tumor Necrosis Factor-- dependent Regulation of Integrin Activation in Splenocytes (original) (raw)
Related papers
Molecular Biology of the Cell, 2007
The Rap1 small GTPase has been implicated in regulation of integrin-mediated leukocyte adhesion downstream of various chemokines and cytokines in many aspects of inflammatory and immune responses. However, the mechanism for Rap1 regulation in the adhesion signaling remains unclear. RA-GEF-2 is a member of the multiple-member family of guanine nucleotide exchange factors (GEFs) for Rap1 and characterized by the possession of a Ras/Rap1-associating domain, interacting with M-Ras-GTP as an effector, in addition to the GEF catalytic domain. Here, we show that RA-GEF-2 is specifically responsible for the activation of Rap1 that mediates tumor necrosis factor-α (TNF-α)-triggered integrin activation. In BAF3 hematopoietic cells, activated M-Ras potently induced lymphocyte function–associated antigen 1 (LFA-1)-mediated cell aggregation. This activation was totally abrogated by knockdown of RA-GEF-2 or Rap1. TNF-α treatment activated LFA-1 in a manner dependent on M-Ras, RA-GEF-2, and Rap1 a...
Blood, 2007
Regulated adhesion of T cells by the integrins LFA-1 (lymphocyte function-associated antigen-1) and VLA-4 (very late antigen-4) is essential for T-cell trafficking. The small GTPase Rap1 is a critical activator of both integrins in murine lymphocytes and T-cell lines. Here we examined the contribution of the Rap1 regulatory pathway in integrin activation in primary CD3+ human T cells. We demonstrate that inactivation of Rap1 GTPase in human T cells by expression of SPA1 or Rap1GAP blocked stromal cell-derived factor-1α (SDF-1α)–stimulated LFA-1–ICAM-1 (intercellular adhesion molecule-1) interactions and LFA-1 affinity modulation but unexpectedly did not significantly affect binding of VLA-4 to its ligand VCAM-1 (vascular cell adhesion molecule 1). Importantly, silencing of the Rap1 guanine exchange factor CalDAG-GEFI inhibited SDF-1α- and phorbol 12-myristate 13-acetate (PMA)–induced adhesion to ICAM-1 while having no effect on adhesion to VCAM-1. Pharmacologic inhibition of Phospho...
The role of Rap1 in integrin-mediated cell adhesion
Biochemical Society Transactions, 2001
Rap1 is a member of the Ras-like small GTPases. Originally the protein was identified in a genome-wide screen for suppressors of Ras transformation, but the mechanism of this reversion remained elusive. We have investigated the signalling function of Rap1. We observed that Rap1 is activated by a large variety of stimuli, including growth factors, neurotransmitters and cytokines. Common second messengers like cAMP, diacylglycerol and calcium are mediators of this activation. These messengers activate guanine nucleotide exchange factors (GEFs), the most notable of which is Epac (exchange protein directly activated by cAMP). However, the downstream effectors of Rap1 are less clear. Although direct connections of Rap1 with the serine/threonine kinases Raf1 and B-raf have been reported, we were unable to find functional evidence for an interaction of endogenous Rap1 signalling with the Raf/extracellular-signal-regulated kinase (ERK) pathway. Instead we observe a clear connection of Rap1 with inside-out signalling to integrins. Indeed, introduction of a constitutively active Rap1 as well as Epac induces integrin-mediated cell adhesion, whereas inhibition of Rap1 signalling by the introduction of Rap1GAP (GTPase-activating protein) inhibits inside-out activation of integrins. More importantly, activation of a G s -protein-coupled receptor results in integrinmediated cell adhesion, by a pathway involving Epac and Rap1. From these results, we conclude that one of the functions of receptor-induced Rap1 activation is inside-out regulation of integrins.
The Small GTPase, Rap1, Mediates CD31-induced Integrin Adhesion
Journal of Cell Biology, 2000
Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical mitogenic stimuli to regulate leukocyte function remains poorly understood. Here, we show that the cytoplasmic tail of CD31, an important integrin adhesion amplifier, propagates signals that induce T cell adhesion via  1 (VLA-4) and  2 (LFA-1) integrins. We identify the small GTPase, Rap1, as a critical mediator of this effect. Importantly, CD31 selectively activated the small Ras-related GTPase, Rap1, but not Ras, R-Ras, or Rap2. An activated Rap1 mutant stimulated T lymphocyte adhesion to intercellular adhesion molecule (ICAM) and vascular cell adhe-sion molecule (VCAM), as did the Rap1 guanine nucleotide exchange factor C3G and a catalytically inactive mutant of RapGAP. Conversely, negative regulators of Rap1 signaling blocked CD31-dependent adhesion. These findings identify a novel important role for Rap1 in regulating ligand-induced cell adhesion and suggest that Rap1 may play a more general role in coordinating adhesion-dependent signals during leukocyte migration and extravasation. Our findings also suggest an alternative mechanism, distinct from interference with Rasproximal signaling, by which Rap1 might mediate transformation reversion.
Journal of Biological Chemistry, 2002
In T-lymphocytes the Ras-like small GTPase Rap1 plays an essential role in stimulus-induced inside-out activation of integrin LFA-1 (␣ L  2) and VLA-4 (␣ 4  1). Here we show that Rap1 is also involved in the direct activation of these integrins by divalent cations or activating antibodies. Inhibition of Rap1 either by Rap GT-Pase-activating protein (RapGAP) or the Rap1 binding domain of RalGDS abolished both Mn 2؉-and KIM185 (anti-LFA-1)-induced LFA-1-mediated cell adhesion to intercellular adhesion molecule 1. Mn 2؉-and TS2/16 (anti-VLA-4)-induced VLA-4-mediated adhesion were inhibited as well. Interestingly, both Mn 2؉ , KIM185 and TS2/16 failed to induce elevated levels of Rap1GTP. These findings indicate that available levels of GTPbound Rap1 are required for the direct activation of LFA-1 and VLA-4. Pharmacological inhibition studies demonstrated that both Mn 2؉-and KIM185-induced adhesion as well as Rap1-induced adhesion require intracellular calcium but not signaling activity of the MEK-ERK pathway. Moreover, functional calmodulin signaling was shown to be a prerequisite for Rap1-induced adhesion. From these results we conclude that in addition to stimulus-induced inside-out activation of integrins, active Rap1 is required for cell adhesion induced by direct activation of integrins LFA-1 and VLA-4. We suggest that Rap1 determines the functional availability of integrins for productive binding to integrin ligands.
Immunology Letters, 2004
Dynamic regulation of integrin-mediated adhesion is central to lymphocyte trafficking and antigen recognition. The small GTPase Rap1 is a potent stimulator of leukocyte integrins through modulation of affinity and avidity. In addition, lymphocyte Rap1 has unique abilities to trigger cell polarization and enhance cell motility. These characteristics of Rap1 contribute to adhesive interactions with antigen-presenting cells (APC) and the vascular endothelium. In the process of elucidating the molecular mechanisms of Rap1-mediated integrin activation, we have identified a novel Rap1-binding molecule, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL). RAPL is predominantly expressed in immune cells, and mediates Rap1-triggered integrin activation upon TCR engagement and chemokine stimulation. Importantly, Rap1/RAPL signaling cooperatively regulates cell polarization and integrin activation. The linkage between cell polarization and integrin activation through Rap1/RAPL signaling likely provides immune cells with their dynamic trafficking capability.
Journal of Biological Chemistry, 2000
Although the Ras subfamily of GTPases consists of ϳ20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, respectively. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homology with the calcium-and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homology with Ras-associating or Ral-GDS/AF6 homology (RA) domains. By searching for in vitro interaction with Ras-GTP proteins, PDZ-GEF specifically bound to Rap1A-and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunoprecipitation studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biological effects.
Rap1A-deficient T and B cells show impaired integrin-mediated cell adhesion
Molecular and cellular biology, 2006
Studies in tissue culture cells have demonstrated a role for the Ras-like GTPase Rap1 in the regulation of integrin-mediated cell-matrix and cadherin-mediated cell-cell contacts. To analyze the function of Rap1 in vivo, we have disrupted the Rap1A gene by homologous recombination. Mice homozygous for the deletion allele are viable and fertile. However, primary hematopoietic cells isolated from spleen or thymus have a diminished adhesive capacity on ICAM and fibronectin substrates. In addition, polarization of T cells from Rap1-/- cells after CD3 stimulation was impaired compared to that of wild-type cells. Despite this, these defects did not result in hematopoietic or cell homing abnormalities. Although it is possible that the relatively mild phenotype is a consequence of functional complementation by the Rap1B gene, our genetic studies confirm a role for Rap1A in the regulation of integrins.