Supplementary Information Superhydrophobic to Superhydrophilic Wetting Control in Graphene Films (original) (raw)
Related papers
Reduction dependent wetting properties of graphene oxide
A B S T R A C T This study reports contact angle measurements of standard, diol and aromatic solvents on graphene oxide thin films thermally reduced in ultra-high vacuum up to 900 °C. The films were chemically and morphologically characterized using respectively X-ray photoemis-sion spectroscopy and atomic force microscopy. The characterization shows that the wetting occurs in the chemically heterogeneous regime, namely the surface roughness (3 nm) does not influence the wetting properties of the samples. Zisman, Owens–Wendt and Neumann methods have been applied in order to calculate the surface free energy of the thin films showing that the Owens–Wendt method best fit the data trends. The surface free energy varies from 51 mN/m (pristine graphene oxide) to 39 mN/m (900 °C reduced graph-ene oxide). A correlation between the surface chemical composition, the surface free energy and its polar and dispersive components is reported, giving a rationale to the wetting properties of graphene oxide and reduced graphene oxide.
We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for <5 min and the absence of these impurities in the bulk. Xray photoelectron spectroscopy analyses of the sample surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.
Advances in Materials Science and Engineering, 2017
A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.
2016
The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions be...