Multiple stability and uniqueness of the limit cycle in a Gause-type predator–prey model considering the Allee effect on prey (original) (raw)
Abstract
In this work, a bidimensional differential equation system obtained by modifying the well-known predator-prey Rosenzweig-MacArthur model is analyzed by considering prey growth influenced by the Allee effect.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (41)
- W.W. Murdoch, C.J. Briggs, R.M. Nisbet, Consumer-Resources Dynamics, Princeton University Press, 2003.
- P. Turchin, Complex Population Dynamics. A Theoretical/Empirical Synthesis, in: Monographs in Population Biology, vol. 35, Princeton University Press, 2003.
- F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends in Ecology and Evolution 14 (10) (1999) 405-410.
- B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natural Resource Modeling 3 (4) (1989) 481-538.
- P.A. Stephens, W.J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology and Evolution 14 (10) (1999) 401-405.
- H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, 1980.
- Y. Kuang, H.I. Freedman, Uniqueness of limit cycles in Gause type models of predator-prey systems, Mathematical Biosciences 88 (1988) 67-84.
- D. Xiao, Z. Zhang, On the uniqueness and nonexistence of limit cycles for predator-prey systems, Nonlinearity 16 (2003) 1185-1201.
- K. Hasík, On a predator-prey system of Gause type, Journal of Mathematical Biology 60 (2010) 59-74.
- Y. Liu, Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems, Proceedings of the American Mathematical Society 133 (2005) 3619-3626.
- K.S. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM Journal on Mathematical Analysis 12 (1981) 541-548.
- R.M. May, Limit cycles in predator-prey communities, Science 177 (1972) 900-902.
- F. Albrecht, H. Gatzke, N. Wax, Stable limit cycles in prey-predator populations, Science 181 (1973) 1073-1074.
- C. Chicone, Ordinary Differential Equations with Applications, 2nd ed., in: Texts in Applied Mathematics, vol. 34, Springer, 2006.
- V.A. Gaiko, Global Bifurcation Theory and Hilbert's Sixteenth Problem, in: Mathematics and its Applications, vol. 559, Kluwer Academic Publishers, 2003.
- C.S. Coleman, Hilbert's 16th. Problem: How Many Cycles? in: M. Braun, C.S. Coleman, D. Drew (Eds.), Differential Equations Model, Springer Verlag, 1983, pp. 279-297.
- P.A. Stephens, W.J. Sutherland, R.P. Freckleton, What is the Allee effect? Oikos 87 (1999) 185-190.
- L. Berec, E. Angulo, F. Courchamp, Multiple allee effects and population management, Trends in Ecology and Evolution 22 (2007) 185-191.
- F. Courchamp, L. Berec, J. Gascoigne, Allee effects in Ecology and Conservation, Oxford University Press, 2008.
- E. Angulo, G.W. Roemer, L. Berec, J. Gascoigne, F. Courchamp, Double allee effects and extinction in the island fox, Conservation Biology 21 (2007) 1082-1091.
- A.D. Bazykin, F.S. Berezovskaya, A.S. Isaev, R.G. Khlebopros, Dynamics of forest insect density: bifurcation approach, Journal of Theoretical Biology 186 (1997) 267-278.
- E.D. Conway, J.A. Smoller, Global Analysis of a system of predator-prey Equations, SIAM Journal on Applied Mathematics 46 (4) (1986) 630-642.
- A.D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, 1998.
- J.D. Flores, J. Mena-Lorca, B. González-Yañez, E. González-Olivares, Consequences of depensation in a Smith's Bioeconomic model for open-access fishery, in: R. Mondaini (Ed.), Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006, E-papers Serviços Editoriais Ltda., 2007, pp. 219-232.
- E. González-Olivares, A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey, Bulletin of Mathematical Biology 73 (2011) 1378-1397.
- G.A.K. van Voorn, L. Hemerik, M.P. Boer, B.W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee, Mathematical Biosciences 209 (2007) 451-469.
- M.-H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences 171 (2001) 83-97.
- J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology 62 (2011) 291-331.
- C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd ed., John Wiley and Sons, 1990.
- C.W. Clark, The Worldwide Crisis in Fisheries: Economic Model and Human Behavior, Cambridge University Press, 2007.
- M. Liermann, R. Hilborn, Depensation: evidence, models and implications, Fish and Fisheries 2 (2001) 33-58.
- D.S. Boukal, M.W. Sabelis, L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses, Theoretical Population Biology 72 (2007) 136-147.
- D.S. Boukal, L. Berec, Single-species models and the Allee effect: extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology 218 (2002) 375-394.
- E. González-Olivares, B. González-Yañez, J. Mena-Lorca, R. Ramos-Jiliberto, Modelling the Allee effect: are the different mathematical forms proposed equivalents? in: R. Mondaini (Ed.), Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006, E-papers Serviços Editoriais Ltda., Rio de Janeiro, 2007, pp. 53-71.
- B.-S. Goh, Management and Analysis of Biological Populations, Elsevier Scientific Publishing Company, 1980.
- E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological Modelling 166 (2003) 135.
- H. Meneses-Alcay, E. González-Olivares, Consequences of the Allee effect on Rosenzweig-MacArthur predator-prey model, in: R.Mondaini (Ed.), Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003, E-papers Serviços Editoriais Ltda., vol. 2 2004, pp. 264-277.
- F. Dumortier, J. Llibre, J.C. Artés, Qualitative Theory of Planar Differential Systems, Springer, 2006.
- D.K. Arrowsmith, C.M. Place, Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour, Chapman and Hall, 1992.
- T. Coulson, P. Rohani, M. Pascual, Skeletons, noise and population growth: the end of an old debate? Trends in Ecology and Evolution 19 (2004) 359-364.
- Wolfram Research, Mathematica: a system for doing mathematics by computer, Champaing, IL, 1988.