Temporally multiplexed quantum repeaters with atomic gases (original) (raw)
Related papers
Demonstration of a stable atom-photon entanglement source for quantum repeaters
Physical review letters, 2007
We demonstrate a novel way to efficiently and very robust create an entanglement between an atomic and a photonic qubit. A single laser beam is used to excite one atomic ensemble and two different spatial modes of scattered Raman fields are collected to generate the atom-photon entanglement. With the help of build-in quantum memory, the entanglement still exists after 20.5 µs storage time which is further proved by the violation of CHSH type Bell's inequality. Our entanglement procedure is the building block for a novel robust quantum repeater architecture [Zhao et al, Phys. Rev. Lett. 98, 240502 (2007)]. Our approach can be easily extended to generate high dimensional atom-photon entanglements.
Long-Lived Quantum Memory with Nuclear Atomic Spins
Physical Review Letters, 2005
We propose to store non-classical states of light into the macroscopic collective nuclear spin (10 18 atoms) of a 3 He vapor, using metastability exchange collisions. These collisions, commonly used to transfer orientation from the metastable state 2 3 S1 to the ground state of 3 He, can also transfer quantum correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a nuclear spin state with very long storage times (hours).
Quantum engineering of photon states with entangled atomic ensembles
Arxiv preprint arXiv:0704.0641, 2007
We propose and analyze a new method to produce single and entangled photons which does not require cavities. It relies on the collective enhancement of light emission as a consequence of the presence of entanglement in atomic ensembles. Light emission is triggered by a laser pulse, and therefore our scheme is deterministic. Furthermore, it allows one to produce a variety of photonic entangled states by first preparing certain atomic states using simple sequences of quantum gates. We analyze the feasibility of our scheme, and particularize it to: ions in linear traps, atoms in optical lattices, and in cells at room temperature.
Physical Review A, 2007
We discuss theoretically quantum interface between light and a spin polarized ensemble of atoms with the spin ≥ 1 based on an off-resonant Raman scattering. We present the spectral theory of the light-atoms interaction and show how particular spectral modes of quantum light couple to spatial modes of the extended atomic ensemble. We show how this interaction can be used for quantum memory storage and retrieval and for deterministic entanglement protocols. The proposed protocols are attractive due to their simplicity since they involve just a single pass of light through atoms without the need for elaborate pulse shaping or quantum feedback. As a practically relevant example we consider the interaction of a light pulse with hyperfine components of D1 line of 87 Rb. The quality of the proposed protocols is verified via analytical and numerical analysis.
Quantum repeaters based on atomic ensembles and linear optics
Reviews of Modern Physics, 2011
The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here we review the theoretical and experimental status quo of this very active field. We compare the potential of different approaches quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.
Time Entanglement between a Photon and a Spin Wave in a Multimode Solid-State Quantum Memory
Physical Review Letters
The generation and distribution of entanglement are key resources in quantum repeater schemes. Temporally multiplexed systems offer time-bin encoding of quantum information which provides robustness against decoherence in fibers, crucial in long distance communication. Here we demonstrate the direct generation of entanglement in time between a photon and a collective spin excitation in a rare earth ion doped ensemble. We analyze the entanglement by mapping the atomic excitation onto a photonic qubit and by using time-bin qubits analyzers implemented with another doped crystal using the atomic frequency comb technique. Our results provide a solid-state source of entangled photons with embedded quantum memory. Moreover, the quality of the entanglement is high enough to enable a violation of a Bell inequality by more than two standard deviations.
Quantum Repeaters with Photon Pair Sources and Multimode Memories
Physical Review Letters, 2007
We propose a quantum repeater protocol which builds on the well-known DLCZ protocol [L.M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller, Nature 414, 413 (2001)], but which uses photon pair sources in combination with memories that allow to store a large number of temporal modes. We suggest to realize such multi-mode memories based on the principle of photon echo, using solids doped with rare-earth ions. The use of multimode memories promises a speedup in entanglement generation by several orders of magnitude and a significant reduction in stability requirements compared to the DLCZ protocol.
Multimode entanglement of light and atomic ensembles via off-resonant coherent forward scattering
Physical Review A, 2005
Quantum theoretical treatment of coherent forward scattering of light in a polarized atomic ensemble with an arbitrary angular momentum is developed. We consider coherent forward scattering of a weak radiation field interacting with a realistic multi-level atomic transition. Based on the concept of an effective Hamiltonian and on the Heisenberg formalism, we discuss the coupled dynamics of the quantum fluctuations of the polarization Stokes components of propagating light and of the collective spin fluctuations of the scattering atoms. We show that in the process of coherent forward scattering this dynamics can be described in terms of a polariton-type spin wave created in the atomic sample. Our work presents a general example of entangling process in the system of collective quantum states of light and atomic angular momenta, previously considered only for the case of spin 1/2 atoms. We use the developed general formalism to test the applicability of spin 1/2 approximation for modelling the quantum non-demolishing measurement of atoms with a higher angular momentum.
Physical Review A, 2006
Coherent control of collective spontaneous emission in an extended atomic ensemble resonantly interacting with single-photon wave packets is analyzed. A scheme for coherent manipulation of collective atomic states is developed such that superradiant states of the atomic system can be converted into subradiant ones and vice versa. Possible applications of such a scheme for optical quantum-state storage and single-photon wave packet shaping are discussed. It is shown that also in the absence of inhomogeneous broadening of the resonant line, single-photon wave packets with arbitrary pulse shape may be recorded as a subradiant state and reconstructed even although the duration of the wave packets is larger than the superradiant lifetime. Specifically the applicability for storing time-bin qubits, which are used in quantum cryptography, is analyzed.