Epitope mapping of two isoforms of a trans Golgi network specific integral membrane protein TGN38/41 (original) (raw)

Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38)

The Biochemical journal, 1990

Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network.

TGN38 is maintained in the trans-Golgi network by a tyrosine-containing motif in the cytoplasmic domain. EMBO J 12: 2219-2228

The EMBO Journal

Sorting of proteins destined for different plasma membrane domains, lysosomes and secretory pathways takes place in the trans-Golgi network (TGN). TGN38 is an integral membrane protein found in this intracellular compartment. We show that TGN38 contains an autonomous targeting signal within its cytoplasmic domain which determines its intracellular location. Deletion analysis and site-directed mutagenesis of this domain demonstrate that a tyrosine motif homologous to the internalization signal of surface receptors is necessary and sufficient for correct localization. These findings suggest that TGN38 is maintained in the TGN by retrieval from the plasma membrane and employs a different mechanism for retention from that of the transferase enzymes of the trans-Golgi.

Perturbation ofthe Morphology ofthe Irans-Golgi Network following Brefeldin A Treatment: Redistribution ofa TGN-specific Integral Membrane Protein, TGN38

Brefeldin A (BFA) has a dramatic effect on the morphology of the Golgi apparatus and induces a rapid redistribution of Golgi proteins into the ER (Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 1989. Cell. 56:801-813) . To date, no evidence that BFA affects the morphology of the trans-Golgi network (TGN) has been presented . We describe the results of experiments, using a polyclonal antiserum to a TGN specific integral membrane pro- tein (TGN38) (Luzio, J. P., B. Brake, G. Banting, K. E. Howell, P Braghetta, and K. K. Stanley. 1990. Biochem. J. 270:97-102), which demonstrate that in- cubation of cells with BFA does induce morphological changes to the TGN . However, rather than redistrib-

A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins

Current Biology, 1999

The mechanism by which peripheral membrane proteins are targeted to the cytoplasmic face of the Golgi apparatus is poorly understood. Previously, we have identified a carboxy-terminal domain of the trans-Golginetwork (TGN) protein p230 that is responsible for Golgi localisation [1]. Here, we report the identification of a similar Golgi-localisation domain (GLD, also termed the 'GRIP' domain -see the paper by Munro and Nichols elsewhere in this issue) in a family of putative peripheral membrane proteins from lower and higher eucaryotes. The majority of family members have a domain structure similar to that of p230, with extensive coiled-coil regions (>80%) and the potential GLD located in a non-coiledcoil domain at the carboxyl terminus. Previously reported proteins in this family include human golgin-97 and Saccharomyces cerevisiae Imh1p. By constructing chimeric cDNAs encoding carboxy-terminal regions of these family members fused to green fluorescent protein (GFP), we have directly demonstrated that the GLD of p230, golgin-97, the newly identified human protein GCC1p and yeast Imh1p functions as a Golgitargeting domain in transfected mammalian cells. Sitedirected mutagenesis of the GLDs identified two conserved aromatic residues that are critical for the function of this targeting domain. Endogenous p230 was displaced from the Golgi membranes in transfected cells expressing high levels of GFP fused to the GLD of either p230 or golgin-97, indicating that different GLDs interact with similar membrane determinants. Thus, we have identified a family of coiled-coil proteins that share a domain shown to be sufficient for the localisation of peripheral membrane proteins to the Golgi apparatus.

Efficient trafficking of TGN38 from the endosome to the trans-Golgi network requires a free hydroxyl group at position 331 in the cytosolic domain

Molecular biology of the cell, 1998

TGN38 is one of the few known resident integral membrane proteins of the trans-Golgi network (TGN). Since it cycles constitutively between the TGN and the plasma membrane, TGN38 is ideally suited as a model protein for the identification of post-Golgi trafficking motifs. Several studies, employing chimeric constructs to detect such motifs within the cytosolic domain of TGN38, have identified the sequence 333YQRL336 as an autonomous signal capable of localizing reporter proteins to the TGN. In addition, one group has found that an upstream serine residue, S331, may also play a role in TGN38 localization. However, the nature and degree of participation of S331 in the localization of TGN38 remain uncertain, and the effect has been studied in chimeric constructs only. Here we investigate the role of S331 in the context of full-length TGN38. Mutations that abolish the hydroxyl moiety at position 331 (A, D, and E) lead to missorting of endocytosed TGN38 to the lysosome. Conversely, mutati...

The Golgi-targeting sequence of the peripheral membrane protein p230

Journal of Cell Science, 1999

Vesicle transport requires the recruitment of cytosolic proteins to specific membrane compartments. We have previously characterised a brefeldin A-sensitive trans-Golgi network-localised protein (p230) that is associated with a population of non-clathrin-coated vesicles. p230 recycles between the cytosol and the cytoplasmic face of buds/vesicles of trans-Golgi network membranes in a G protein-regulated manner. Identifying the mechanism responsible for Golgi targeting of p230 is important for the elucidation of its function. By transfection of COS cells with deletion mutants of p230 we here demonstrate that the C-terminal domain is necessary for targeting to the Golgi. Furthermore, the C-terminal 98 amino acid domain of p230 attached to the green fluorescent protein (GFP-p230-C98aa) was efficiently Golgi-localised in transfected COS cells. Deletion mutants of GFP-p230-C98aa together with alanine scanning mutagenesis identified a minimum stretch of 42 amino acids that is essential for...