The mammalian central pattern generator for locomotion (original) (raw)
Abstract
At the beginning of the 20th century, Thomas Graham Brown conducted experiments that after a long hiatus changed views on the neural control of locomotion. His seminal work supported by subsequent evidence generated largely from the 1960s onwards showed that across species walking, flying, and swimming are controlled largely by a neuronal network that has been referred to as the central pattern generator (CPG) for locomotion. In mammals, this caudally localized spinal cord network was found to generate the basic command signals sent to muscles of the limbs for locomotor rhythm and pattern generation. This article constitutes a comprehensive review summarizing key findings on the organization and properties of this network.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (126)
- Alford, S., Schwartz, E., Viana di Prisco, G., 2003. The pharmacology of vertebrate spinal central pattern generators. Neuroscientist 9 (3), 217-228.
- Angel, M.J., Guertin, P., Jimenez, I., McCrea, D.A., 1996. Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion. J. Physiol. 494 (Pt 3), 851-861.
- Angel, M.J., Jankowska, E, McCrea, D.A., 2005. Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J. Physiol. 563 (Pt 2), 597-610.
- Arshavsky, Y.I., Deliagina, T.G., Orlovsky, G.N., 1997. Pattern generation. Curr. Opin. Neurobiol. 7 (6), 781-789.
- Barbeau, H., Rossignol, S., 1991. Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res. 546 (2), 250-260.
- Bergmans, J., Burke, R., Lundberg, A., 1969. Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13 (3), 600-602.
- Bizzi, E., Cheung, V.C., d'Avella, A., Saltiel, P., Tresch, M., 2008. Combining modules for movement. Brain Res. Rev. 57, 25-33.
- Brownstone, R.B., 2006. Beginning at the end: repetitive firing properties in the final common pathway. Prog. Neurobiol. 18, 156-172.
- Brownstone, R.B., Wilson, J.M., 2008. Strategies for delineating spinal locomotor-rhythm generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res. Rev. 57, 64-76.
- Bullock, T.H., 1961. The origin of patterned nervous discharge. Behaviour 17, 48-59.
- Buschges, A., Akay, T., Gabriel, J.P., Schmidt, J., 2008. Organizing network action for locomotion: insights from studying insect walking. Brain Res. Rev. 57, 162-171.
- Butt, S.J., Harris-Warrick, R.M., Kiehn, O., 2002. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator. J. Neurosci. 22 (22), 9961-9971.
- Butt, S.J., Lundfald, L., Kiehn, O., 2005. EphA4 defines a class of excitatory locomotor-related interneurons. Proc. Natl. Acad. Sci. USA 102 (39), 14098-14103.
- Cazalets, J.R., Grillner, P, Menard, I, Cremieux, J., Clarac, F., 1990. Two types of motor rhythm induced by NMDA and amines in an in vitro spinal cord preparation of neonatal rat. Neurosci. Lett. 111 (1-2), 116-121.
- Chau, C., Barbeau, H., Rossignol, S., 1998a. Effects of intrathecal alpha1-and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J. Neurophysiol. 79 (6), 2941-2963.
- Chau, C., Barbeau, H., Rossignol, S., 1998b. Early locomotor training with clonidine in spinal cats. J. Neurophysiol. 79 (1), 392-409.
- Christie, K.J., Whelan, P.J., 2005. Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. J. Neurophysiol. 94 (2), 1554-1564.
- Cina, C., Hochman, S., 2000. Diffuse distribution of sulforhodamine-labeled neurons during serotonin-evoked locomotion in the neonatal rat thoracolumbar spinal cord. J. Comp. Neurol. 423 (4), 590-602.
- Clarac, F., 2008. Some historical reflections on the neural control of locomotion. Brain Res. Rev. 57, 13-21.
- Clarac, F, Pearlstein, E., 2007. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th C. Brain Res. Rev. 54, 113-161.
- Cowley, K.C., Schmidt, B.J., 1994a. A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci. Lett. 171 (1-2), 147-150.
- Cowley, K.C., Schmidt, B.J., 1994b. Some limitations of ventral root recordings for monitoring locomotion in the in vitro neonatal rat spinal cord preparation. Neurosci. Lett. 171 (1-2), 142-146.
- Crone, S.A., Quinlan, K.A., Zagoraiou, L., Droho, S., Restrepo, C.E., Lundfald, L., Endo, T., Setlak, J., Jessell, T.M., Kiehn, O., Sharma, K., 2008. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60 (1), 70-83.
- Dai, X., Noga, B.R., Douglas, J.R., Jordan, L.M., 2005. Localization of spinal neurons activated during locomotion using the c-fos immunohistochemical method. J. Neurophysiol. 93 (6), 3442-3452.
- Delcomyn, F., 1977. Co-ordination of invertebrate locomotion. In: Alexander, RM, Gold Spink, G (Eds.), Mechanics and Energetics of Locomotion. Chapman and Hall, London, pp. 82-114.
- Delcomyn, F., 1980. Neural basis of rhythmic behavior in animals. Science 210, 492-498.
- Dimitrijevic, M.R., Gerasimenko, Y., Pinter, M.M., 1998. Evidence for a spinal central pattern generator in humans. Ann. N.Y. Acad. Sci. 860, 360-376.
- Drew, T., Andujar, J.E., Lajoie, K., Yakovenko, S., 2008. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res. Rev. 57, 199-211.
- Edgerton, V.R., Grillner, S., Sjostrom, A., Zangger, P., 1976. Central generation of locomotion in vertebrates. Neural control of locomotion, 18. Plenum Press, New-York, pp. 439-464.
- Edgley, S.A., Jankowska, E., 1987. An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord. J. Physiol. 389, 647-674.
- Flourens, M.-J.-P., 1824. Recherches expérimentales sur les propriétés et les Fonctions du Système Nerveux, dans les Animaux Vertébrés, Experimental Studies on the Properties and Functions of the Nervous System in Vertebrate Animals. Chez Crevot, Paris.
- Forssberg, H., Grillner, S., 1973. The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res. 50 (1), 184-186.
- Freusberg, A., 1874. Reflexbewegungen beim Hunde. Pflügers Arch. 9, 358-391.
- Getting, P.A., 1977. Neuronal organization of escape swimming in Tritonia. J. Comp. Physiol. 121, 325-342.
- Gosgnach, S., Lanuza, G.M., Butt, S.J., Saueressig, H., Zhang, Y., Velasquez, T., Riethmacher, D., Callaway, E.M., Kiehn, O., Goulding, M., 2006. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440 (7081), 215-219.
- Gossard, J.P., Brownstone, R.M., Barajon, I., Hultborn, H., 1994. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp. Brain Res. 98 (2), 213-228.
- Graham Brown, T., 1911. The intrinsic factors in the act of progresson in the mammal. Proc. R. Soc. Lond. 84, 309-319.
- Graham Brown, T., 1914. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18-46.
- Grillner, S., 1975. Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55, 247-304.
- Grillner, S., 1981. Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart, Mountcastle (Eds.), Handbook of Physiology. The nervous system II. Am. Physiol. Sco., Bethesda, pp. 1179-1236.
- Grillner, S., Zangger, P., 1974. Locomotor movements generated by the deafferented spinal cord. Acta Physiol. Scand. 91, 38A-39A.
- Grillner, S., Zangger, P., 1979. On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34 (2), 241-261.
- Grillner, S., Buchanan, J.T., Lansner, A., 1988. Simulation of the segmental burst generating network for locomotion in lamprey. Neurosci. Lett. 89, 31-35.
- Grillner, S., Wallen, P., Saitoh, K., Kozlov, A., Robertson, B., 2008. Neural bases of goal-directed locomotion in vertebrates -an overview. Brain Res. Rev. 57, 2-12.
- Grob, M., Guertin, P.A., 2007. Role of Ca2+ in the pacemaker-like property of spinal motoneurons. Med. Sci. 23 (1), 64-66.
- Guertin, P., 1996. Central mediation of grouop 1 muscle afferent evoked adaptation of the locomotor step cycle in decerebrate cats. Ph.D. thesis, University of Manitoba.
- Guertin, P., Angel, M.J., Perreault, M.C., McCrea, D.A., 1995. Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J. Physiol. 487 (Pt 1), 197-209.
- Guertin, P.A., 2004. Role of NMDA receptor activation in serotonin agonist-induced air-stepping in paraplegic mice. Spinal Cord 42 (3), 185-190.
- Guertin, P.A., 2005. Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice. Spinal Cord 43 (3), 162-166.
- Guertin, P.A., 2008. A technological platform to optimize combinatorial treatment design and discovery for chronic spinal cord injury. J. Neurosci. Res. 86 (14), 3039-3051.
- Guertin, P.A., 2009. Recovery of locomotor function with combinatory drug treatments designed to synergistically activate specific neuronal networks. Curr. Med. Chem. 16 (11), 1366-1371.
- Guertin, P.A., Hounsgaard, J., 1998a. Chemical and electrical stimulation induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles. Neurosci. Lett. 245 (1), 5-8.
- Guertin, P.A., Hounsgaard, J., 1998b. NMDA-Induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. J. Neurophysiol. 80 (6), 3380-3382.
- Guertin, P.A., Steuer, I., 2009. Key central pattern generators of the spinal cord. J. Neurosci. Res. 87 (11), 2399-2405.
- Gurfinkel, V.S., Shik, M.L., 1973. The control of posture and locomotion. In: Gydikov, F., Tankov, F., Kosarov, F. (Eds.), Motor control. Plenum Press, New York, pp. 217-234.
- Harris-Warrick, R.M., 2002. Voltage-sensitive ion channels in rhythmic motor systems. Curr. Opin. Neurobiol. 12, 646-651.
- Hoover, J.E., Durkovic, R.G., 1992. Re Retrograde labeling of lumbosacral interneurons following injections of red and green fluorescent microspheres into hindlimb motor nuclei of the cat. Somatosens. Mot. Res. 9 (3), 211-226.
- Hopper, S.L., DiCaprio, R.A., 2004. Crustacean motor pattern generator networks. Invertebrate neural networks. Neuro-Signals 13, 50-69.
- Huang, A., Noga, B.R., Carr, P.A., Fedirchuk, B., Jordan, L.M., 2000. Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization. J. Neurophysiol. 83 (6), 3537-3547.
- Hugues, G.M., Wiersma, C.A.G., 1960. The coordination of swimmeret movements in the crayfish, Procambarus clarkii (Girard). J. Exptl. Biol. 39, 657-670.
- Hultborn, H., Nielsen, J., 2007. Spinal control of locomotion -from cat to man. Acta Physiol. 189, 111-121.
- Jankowska, E., Jukes, M.G., Lund, S., Lundberg, A., 1967a. The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70 (3), 389-402.
- Jankowska, E., Jukes, M.G., Lund, S., Lundberg, A., 1967b. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol. Scand. 70 (3), 369-388.
- Jordan, L.M., Liu, J., Hedlund, P.B., Akay, T., Pearson, K.G., 2008. Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57, 183-191.
- Kiehn, O., 2006. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279-306 Review.
- Kiehn, O., Kjaerulff, O., 1996. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J. Neurophysiol. 75 (4), 1472-1482.
- Kjaerulff, O., Barajon, I., Kiehn, O., 1994. Sulphorhodamine-labelled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. J. Physiol. 478 (Pt 2), 265-273.
- Kriellaars, D., 1992. Generation and peripheral control of locomotor rhythm. University of Manitoba, Ph D thesis.
- Kriellaars, D.J., Brownstone, R.M., Noga, B.R., Jordan, L.M., 1994. Mechanical entrainment of fictive locomotion in the decerebrate cat. J. Neurophysiol. 71 (6), 2074-2086.
- Kristan, W.B., Weeks, J.C., 1983. Neurons controlling the initiation, generation and modulation of leech swimming. In: Roberts, A, Roberts, B (Eds.), Neural origin of rhythmic movements. Cambridge University Press, Cambridge.
- Kullander, K., Butt, S.J., Lebret, J.M., Lundfald, L., Restrepo, C.E., Rydstrom, A., Klein, R., Kiehn, O., 2003. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299 (5614), 1889-1892.
- Lafreniere-Roula, M., McCrea, D.A., 2005. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 94 (2), 1120-1132.
- Landry, E.S., Guertin, P.A., 2004. Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 28 (6), 1053-1060.
- Landry, E.S., Lapointe, N.P., Rouillard, C., Levesque, D., Hedlund, P.B., Guertin, P.A., 2006. Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur. J. Neurosci. 24 (2), 535-546.
- Langlet, C., Leblond, H., Rossignol, S., 2005. Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. J. Neurophysiol. 93 (5), 2474-2488.
- Lanuza, G.M., Gosgnach, S., Pierani, A., Jessell, T.M., Goulding, M., 2004. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42 (3), 375-386.
- Lapointe, N.P., Ung, R.V., Guertin, P.A., 2007. Plasticity in sublesionally located neurons following spinal cord injury. J. Neurophysiol. 98, 2497-2500.
- Lapointe, N.P., Ung, R.V., Rouleau, P., Guertin, P.A., 2008. Effects of spinal alpha(2)-adrenoceptor and I(1)-imidazoline receptor activation on hindlimb movement induction in spinal cord-injured mice. J. Pharmacol. Exp. Ther. 325 (3), 994-1006.
- Lapointe, N.P., Rouleau, P., Ung, R.V., Guertin, P.A., 2009. Specific role of D1 receptors in spinal network activation and rhythmic movement induction in vertebrates. J. Physiol. 587, 1499-1511.
- Lundberg, A., 1965. Interactions entre voies reflexes spinales (interaction between the spinal reflex patheays). Actual Neurophysiol. (Paris) 16, 121-137.
- Lundfald, L., Restrepo, C.E., Butt, S.J., Peng, C.Y., Droho, S., Endo, T., Zeilhofer, H.U., Sharma, K., Kiehn, O., 2007. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur. J. Neurosci. 26 (11), 2989-3002.
- McCrea, D.A., Rybak, I.A., 2008. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57 (1), 134-146.
- McCrea, D.A., Pratt, C.A., Jordan, L.M., 1980. Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. J. Neurophysiol. 44 (3), 475-488.
- Miller, S., Scott, P.D., 1977. The spinal locomotor generator. Exp. Brain Res. 30, 387-403.
- Minassian, K., Persy, I., Rattay, F., Pinter, M.M., Kern, H., Dimitrijevic, M.R., 2007. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum. Mov. Sci. 26, 275-295.
- Nakamura, Y., Katakura, N., 1995. Generation of masticatory rhythm in the brainstem. Neurosci. Res. 23 (1), 1-19.
- Nishimaru, H., Takizawa, H., Kudo, N., 2000. 5-Hydroxytryptamine-induced locomotor rhythm in the neonatal mouse spinal cord in vitro. Neurosci. Lett. 280 (3), 187-190.
- Nissen, U.V., Mochida, H., Glover, J.C., 2005. Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord. J. Comp. Neurol. 483, 30-47.
- Noga, B.R., Shefchyk, S.J., Jamal, J., Jordan, L.M., 1987. The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp. Brain Res. 66 (1), 99-105.
- O'Donovan, M.J., Bonnot, A., Wenner, P., Mentiz, G.Z., 2005. Calcium imaging of network function in the developing spinal cord. Cell Calcium 37, 443-450.
- Orlovskii, G.N., Severin, S.V., Shik, M.L., 1966. Locomotion induced by stimulation of the mesencephalon. Dokl. Akad. Nauk. SSSR. 169 (5), 1223-1226.
- Pearson, K.G., 1995. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5 (6), 786-791.
- Pearson, K.G., Duysens, J., 1976. Function of segmental re exes in the control of stepping in cockroaches and cats. In: Herman, R.E., Grillner, S., Stuart, D., Stein, P. (Eds.), Neural Control in Locomotion. Plenum Press, New York.
- Pearson, K.G., Rossignol, S., 1991. Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66 (6), 1874-1887.
- Perreault, M.C., Angel, M.J., Guertin, P., McCrea, D.A., 1995. Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. J. Physiol. 15;487 (Pt 1), 211-220.
- Perret, C., Cabelguen, J.M., 1980. Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res 187 (2), 333-352.
- Petruska, J.C., Ichiyama, R.M., Jindrich, D.L., Crown, E.D., Tansey, K.E., Roy, R.R., Edgerton, V.R., Mendell, L.M., 2007. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J. Neurosci. 27, 4460-4471.
- Philippson, M., 1905. L'autonomie et la centralisation dans le système nerveux des animaux [Autonomy and centralization in the animal nervous system]. Trav. Lab. Physiol. Inst. Solvay (Bruxelles) 7, 1-208.
- Pratt, C.A., Jordan, L.M., 1987. Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57 (1), 56-71.
- Puskar, Z., Antal, M., 1997. Localization of last-order premotor interneurons in the lumbar spinal cord of rats. J. Comp. Neurol. 389, 377-389.
- Robertson, R.M., Pearson, K.G., 1985. Neural circuits in the flight system of the locust. J. Neurophysiol. 53 (1), 110-128.
- Shefchyk, S., McCrea, D., Kriellaars, D., Fortier, P., Jordan, L., 1990. Activity of interneurons within the L4 spinal segment of the cat during brainstem-evoked fictive locomotion. Exp. Brain Res. 80 (2), 290-295.
- Sherrington, C.S., 1910. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40 (1-2), 28-121.
- Shik, M.L., Orlovsky, G.N., 1976. Neurophysiology of locomotor automatism. Physiol. Rev. 56 (3), 465-501.
- Sigvardt, K.A., Grillner, S., Wallen, P., Van Dongen, P.A., 1985. Activation of NMDA receptors elicits fictive locomotion and bistable membrane properties in the lamprey spinal cord. Brain Res. 336 (2), 390-395.
- Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L., 1991. Pre-Boetzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726-729.
- Stein, P.S., 1971. Intersegmental coordination of swimmeret motoneuron activity in crayfish. J. Neurophysiol. 34 (2), 310-318.
- Stein, P.S., 2005. Neuronal control of turtle hindlimb motor rhythms. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 191 (3), 213-229.
- Stein, R.B., Mushahwar, V., 2005. Reanimating limbs after injury or disease. Trends Neurosci. 28, 518-524.
- Stokke, M.F., Nissen, U.V., Glover, J.C., Kiehn, O., 2002. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rats. J. Comp. Neurol. 446, 349-359.
- Stuart, D.G., Hultborn, H., 2008. Thomas Graham Brown (1882-1965), Anders Lundberg (1920-), and the neural control of stepping. Brain Res. Rev. 59, 74-95.
- Syed, N.I., Bulloch, A.G., Lukowiak, K., 1990. In vitro reconstruction of the respiratory central pattern generator of the mullusk Lymnaea. Science 250 (4978), 282-285.
- Székely, G., Czéh, G., Voros, G., 1969. The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp. Brain Res. 9 (1), 53-72.
- Tazerart, S., Viemari, J.C., Darbon, P., Vinay, L., Brocard, F., 2008. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J. Neurophysiol. 98, 613-628.
- Thompson, A.K., Estabrooks, K.L., Chong, S., Stein, R.B., 2009. Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation. Neurorehabil. Neural Repair. 23, 133-142.
- Tresch, M.C., Saltiel, P., Bizzi, E., 1999. The construction of movement by the spinal cord. Nat. Neurosci. 2, 162-167.
- Ung, R.V., Landry, E.S., Rouleau, P., Lapointe, N.P., Rouillard, C., Guertin, P.A., 2008. Role of spinal 5-HT2 receptor subtypes in quipzine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur. J. Neurosci. 28, 2231-2242.
- Viala, D., Buser, P., 1969. The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbit. Brain Res. 12 (2), 437-443.
- Viala, D., Buisseret-Delmas, C., Portal, J.J., 1988. An attempt to localize the lumbar locomotor generator in the rabbit using 2-deoxy-[14C]glucose autoradiography. Neurosci. Lett. 86 (2), 139-143.
- Whelan, P., Bonnot, A., O'Donovan, M.J., 2000. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J. Neurophysiol. 84 (6), 2821-2833.
- Whelan, P.J., Hiebert, G.W., Pearson, K.G., 1995. Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp. Brain Res. 103 (1), 20-30.
- Wilson, D.M., Wyman, R.J., 1965. Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. 5, 121-143.
- Wilson, J.M., Hartley, R., Maxwell, D.J., Todd, A.J., Lieberam, I., Kaltschmidt, J.A., Yoshida, Y., Jessell, T.M., Brownstone, R.M., 2005. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 25 (24), 5710-5719.
- Wilson, J.M., Cowan, A.I., Brownstone, R.M., 2007. Heterogeneous electronic coupling and synchronization of rhythmic bursting activity in mouse HB9 interneurons. J. Neurophysiol. 98, 2370-2381.
- Zhang, Y., Narayan, S., Geiman, E., Lanuza, G.M., Velasquez, T., Shanks, B., Akay, T., Dyck, J., Pearons, K., Gosgnach, S., Fan, C.M., Goulding, M., 2008. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60 (1), 84-96.
- Zhong, G., Masino, M.A., Harris-Warrick, R.M., 2007. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J. Neurosci. 27, 4507-4518.