Tuneable Singlet Exciton Fission and Triplet–Triplet Annihilation in an Orthogonal Pentacene Dimer (original) (raw)

1 wileyonlinelibrary.com proceed on ultrafast (≈100 fs) time scales, allowing it to out-compete other decay channels and achieve high effi ciencies. [ 3 ] The essential condition for effi cient SEF is the energetic alignment of the singlet and triplet states, such that 2 E (T 1) ≤ E (S 1). A recent combined theoretical and experimental study of SEF rates in a range of acene solids has demonstrated that the rate of SEF is also greatly affected by the strength of intermolecular coupling within the fi lm. [ 4 ] In the canonical system, pentacene, triplet pair formation is exo-thermic and the intermolecular coupling is strong, resulting in SEF with an 80 fs time constant and nearly 200% yield. [ 5 ] Though most experimental studies of SEF have involved crystalline, polycrystalline or amorphous solids, the most basic unit capable of SEF is a pair of chromophores. Indeed, it was recently demonstrated in concentrated solutions of TIPS-pentacene that singlet fi ssion can proceed at high efficiency through bimolecular diffusional interactions. [ 6 ] However , early attempts to directly control the interaction between chromophores through the use of covalent dimers have not been as successful. The most notable systems in this regard are tetracene and 1,3-diphenylisobenzofuran. These materials are found to exhibit effi cient SEF in the solid state, but their covalent dimers achieved triplet yields of only a few percent. In both of these studies, [ 7 ] the two SEF chromophores were joined by a range of linkers to modify the strength of the electronic coupling between them, with the aim of tuning the rate and effi ciency of SEF. The impact was subtle, and it thus remains unclear why covalent dimers have proved ineffi cient to date. Current models suggest that dimers should be asymmetric or contain signifi cant cofacial interaction between chromophores to attain high triplet yields. [ 2,8 ] Interestingly, a recent study of pentacene dimers separated by a phenyl spacer unit achieved triplet yields above 100% in spite of using the same symmetric bonding motifs of the earlier tetracene dimers. [ 9 ] In this work, we report highly effi cient intramolecular SEF in a new type of covalent dimer, with triplet yields of up to 192 ± 3%. The molecule used in this study, 13,13′-bis(mesityl)-6,6′-dipentacenyl (DP-Mes, Figure 1 a), consists of two pen-tacenes directly bonded through a single C C bond with two bulky mesityl groups at the meso-positions. The geometry of the dimer, with two nearly orthogonal pentacene cores, is unlike Fast and highly effi cient intramolecular singlet exciton fi ssion in a pentacene dimer, consisting of two covalently attached, nearly orthogonal pentacene units is reported. Fission to triplet excitons from this ground state geometry occurs within 1 ps in isolated molecules in solution and dispersed solid matrices. The process exhibits a sensitivity to environmental polarity and competes with geometric relaxation in the singlet state, while subsequent triplet decay is strongly dependent on conformational freedom. The near orthogonal arrangement of the pentacene units is unlike any structure currently proposed for effi cient singlet exciton fi ssion and may lead to new molecular design rules.