Genome sequence announcement of potential phthalic acid degrader Pseudomonas aeruginosa HNYM 41 and Bacillus cereus BVC 11 isolated from plastic dumping ground area (original) (raw)
Related papers
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2010
Thirty-two strains of phthalic acid ester (PAEs)-degrading bacteria were isolated from thirteen geographically diverse sites by enrichment using mixtures of PAEs as the sole source of carbon and energy. Sequence analyses of the 16S rRNA gene indicated that these isolates were from six genera (Arthrobacter, Gordonia, Rhodococcus, Acinetobacter, Pseudomonas, and Delftia). To evaluate the genetic diversity among them, the molecular typing method rep-PCR with primers based on enterobacterial repetitive intergenic consensus, repetitive extragenic palindromes, and BOXAIR sequences was performed. Strain-specific and unique genotypic fingerprints were distinguished for most of these isolates. In addition, utilization of various PAEs and the central intermediate phthalic acid by representative isolates suggested inter-isolate differences in the substrate utilization and degradation pathways. Furthermore, HPLC analysis showed that the rate of dimethyl phthalate degradation varied from 48.32 to 100% between strains. These results suggest a high level of genetic diversity among PAEs-degrading bacteria in the natural environment and their great potential to clean up phthalates-contaminated environments.
Journal of Ecophysiology and Occupational Health, 2020
The present work has been undertaken for remediating phthalate exposure in the environment. The microbial strain was isolated by enrichment culture technique from the rubbish dump space close to Patna that was contaminated with phthalates for higher degradation ability. The isolated microbial strain T7 was designated as Bacillus cereus after Gram-staining, biochemical characterization, 16S-rRNA sequence and phylogenetic studies. The isolate had the power to utilize 25O μg/ml Di (2-ethyl Hexyl Phthalate) (DEHP) dose taken from 10 mg/ml (DEHP) stock solution within the growth medium. The optimum pH and temperature for DEHP degradation were 8.5 at 37 C. The isolated bacterial strain T7 may allow up to 10% NaCl in minimal salt medium that was enrich with DEHP. The metabolic end product obtained after LCMS was bis [3-(oxolan-2-yl) propyl] nonanedioate having chemical formula C 23 H 40 O 6 . This work provides some new proof for soil rectification by Bacillus species.
Applied Microbiology and Biotechnology, 2006
Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4 capable of utilizing phthalate isomers were isolated from the soil using enrichment culture technique. The strain ISP4 metabolizes isophthalate, while PPD and PP4 utilizes all three phthalate isomers (ortho-, iso- and tere-) as the sole carbon source. ISP4 utilizes isophthalate (0.1%) more rapidly (doubling time, 0.9 h) compared to PPD (4.64 h), PP4 (7.91 h) and other reported strains so far. The metabolic pathways in these isolates were initiated by dihydroxylation of phthalate isomers. Phthalate is hydroxylated to 3,4-dihydro-3,4-dihydroxyphthalate and 4,5-dihydro-4,5-dihydroxyphthalate in strains PP4 and PPD, respectively; while terephthalate is hydroxylated to 2-hydro-1,2-dihydroxyterephthalate. All three strains hydroxylate isophthalate to 4-hydro-3,4-dihydroxyisophthalate. The generated dihydroxyphthalates were subsequently metabolized to 3,4-dihydroxybenzoate (3,4-DHB) which was further metabolized by ortho ring-cleavage pathway. PP4 and PPD cells grown on phthalate, isophthalate or terephthalate showed respiration on respective phthalate isomer and the activity of corresponding ring-hydroxylating dioxygenase, suggesting the carbon source specific induction of three different ring-hydroxylating dioxygenases. We report, for the first time, the activity of isophthalate dioxygenase and its reductase component in the cell-free extracts. The enzyme showed maximum activity with reduced nicotinamide adenine dinucleotide (NADH) in the pH range 8-8.5. Cells grown on glucose failed to respire on phthalate isomers and 3,4-DHB and showed significantly low activities of the enzymes suggesting that the enzymes are inducible.
2020
Today, high-density plastics such as polyethylene are recognized as one of the major pollutants of the environment by the Global Environment Organization. This study has been designed to isolate bacterial strains of Pseudomonas with polyethylene degradation power and to clone the alk-B gene to be used in the future to expedite the biological degradation of plastic waste. To isolate the polyethylene degrading bacteria, two culture methods were used, direct culture and pre-enriched medium. Bacteria were cultured in MSM medium, and the best strains that could decrease the plastic weight were selected for PCR of the alk-B gene. After phylogenetic analysis of PCR sequences and TA cloning, the alkB gene was introduced into the E. coli XL1-Blue by PTG19-T vector. After confirming the presence of the gene in the cloning vector by colony PCR, the samples with recombinant plasmids were sequenced. The percentage of polyethylene degradation by Pseudomonas strains was 7.2% at most and 4.5% on av...