Glucose plus metformin compared with glucose alone on β‑cell function in mouse pancreatic islets (original) (raw)

Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells

Diabetes, 2000

Because metformin affects glucose and free fatty acid (FFA) metabolism in peripheral insulin target tissues, we investigated the effect of this drug in restoring a normal secretory pattern in rat pancreatic islets whose function has been impaired by chronic exposure to elevated FFA or glucose concentrations. We cultured rat pancreatic islets with or without FFA (2 mmol/l oleate/ palmitate 2:1) or high glucose (16.7 mmol/l) concentrations in the presence or absence of metformin (0.25-12.5 µg/ml) and then measured insulin release, glucose utilization, glucose, and FFA oxidation. When compared with control islets, islets exposed to high FFA or glucose concentrations showed an increased basal and a decreased glucose-induced insulin release. In islets cultured for an additional 24 h with FFA or glucose in the presence of metformin (2.5 µg/ml), both basal and glucose-induced insulin secretions were restored. Both glucose utilization and glucose oxidation were altered in islets pre-exposed to high FFA or glucose concentrations. In particular, regarding control islets, glucose utilization was increased at 2.8 mmol/l glucose and decreased at 16.7 mmol/l glucose; glucose oxidation was similar to control islets at 2.8 mmol/l glucose but decreased at 16.7 mmol/l glucose. In contrast, oleate oxidation was increased in islets pre-exposed to FFA. All of these abnormalities were reversed in islets cultured for an additional 24 h with high FFA or glucose concentrations in the presence of metformin (2.5 µg/ml). In conclusion, our data show that metformin is able to restore the intracellular abnormalities of glucose and FFA metabolism and to restore a normal secretory pattern in rat pancreatic islets whose secretory function has been impaired by chronic exposure to elevated FFA or glucose levels. These data raise the possibility that, in diabetic patients, metformin (in addition to its peripheral effects) may have a direct beneficial effect on the ␤-cell secretory function. Diabetes 49:735-740, 2000

Pancreatic Islets from Type 2 Diabetic Patients Have Functional Defects and Increased Apoptosis That Are Ameliorated by Metformin

The Journal of Clinical Endocrinology & Metabolism, 2004

Several properties of pancreatic ␤-cells in type 2 diabetes (T2D) were studied by using islets isolated from T2D subjects. Moreover, because metformin has protective effects on nondiabetic ␤-cells exposed to high glucose or free fatty acid levels, we investigated its direct action on T2D islet cells. Diabetic islets were characterized by reduced insulin content, decreased amount of mature insulin granules, impaired glucose-induced insulin secretion, reduced insulin mRNA expression, and increased apoptosis with enhanced caspase-3 and -8 activity. These alterations were associated with increased oxidative stress, as shown by higher nitrotyrosine concentrations, increased expression of protein kinase C-␤2 and nicotinamide adenine dinucleotide phosphate reducedoxidase, and changes in mRNA expression of manganese-superoxide dismutase, Cu/Zn-superoxide dismutase, catalase, and glutathione peroxidase. Twenty-four-hour incubation of T2D islets with metformin was associated with increased insulin content, increased number and density of mature insulin granules, improved glucose-induced insulin release, and increased insulin mRNA expression. Moreover, apoptosis was reduced, with concomitant decrease of caspase-3 and -8 activity. These changes were accompanied by reduction or normalization of several markers of oxidative stress. Thus, T2D islets have several functional and survival defects, which can be ameliorated by metformin; the beneficial effects of the drug are mediated, at least in part, by a reduction of oxidative stress. (J Clin Endocrinol Metab 89: 5535-5541, 2004)

Molecular and immunohistochemical effects of metformin in a rat model of type�2 diabetes mellitus

Experimental and Therapeutic Medicine, 2015

Type 2 diabetes mellitus (T2DM) is a serious health issue worldwide. The disease is characterized by insulin resistance (IR), which leads to dyslipidemia and alterations in the expression levels of a number of genes. Metformin is the standard treatment for T2DM; however, the exact mechanism underlying metformin regulation is not fully understood. The aim of the present study was to investigate the effects of metformin on serum lipid profiles and the expression levels of various genes that are associated with IR, as well as the histopathological changes in the liver and pancreas. A T2DM rat model was established by feeding the rats a high-fat diet for 4 weeks, combined with a dose of streptozotocin (35 mg/kg body weight). Following the successful induction of T2DM, metformin was administered orally (400 mg/kg/day) for 4 weeks. The results indicated that metformin improved the symptoms of IR by normalizing the serum lipid profiles in the diabetic rats. Furthermore, metformin upregulated the expression of insulin receptors and genes associated with lipid metabolism, including acyl-CoA oxidase, carnitine palmitoyl transferase-1 and peroxisome proliferator activated receptor-α. In addition, treatment with metformin downregulated the expression levels of fetuin-A and retinol binding protein-4 (RBP-4), while normalizing the expression of perilipin that had been reduced in the T2DM rats. Metformin administration induced regenerative changes in the hepatocyte cytoplasm and parenchyma. In the pancreas, treatment with metformin was shown to induce positive signaling for insulin and the regeneration of pancreatic β cells. In summary, metformin treatment ameliorated a number of the harmful effects associated with T2DM via the modulation of the expression levels of fetuin-A, RBP-4, perilipin and various genes associated with lipid metabolism, resulting in regenerative changes in the liver and pancreatic cells.

Metformin Inhibits Mouse Islet Insulin Secretion and Alters Intracellular Calcium in a Concentration-Dependent and Duration-Dependent Manner near the Circulating Range

Journal of diabetes research, 2018

Metformin is considered the first-line treatment for type 2 diabetes. While metformin primarily increases insulin sensitivity, evidence also suggests that metformin affects the activity of insulin-secreting pancreatic islets. This study was designed to systematically examine the direct effects of metformin by measuring insulin secretion and the kinetics of the calcium response to glucose stimulation in isolated mouse islets using varying concentrations (20 M, 200 M, and 1 mM) and durations (~1, 2, and 3 days) of metformin exposure. We observed both concentration- and duration-dependent inhibitory effects of metformin. Concentrations as little as 20 M (nearing circulating therapeutic levels) were sufficient to reduce insulin secretion following 3-day treatment. Concentrations of 200 M and 1 mM produced more pronounced effects more rapidly. With 1 mM metformin, islets showed severe impairments in calcium handling, inhibition of insulin secretion, and increased cell death. No stimulato...

Molecular and immunohistochemical effects of metformin in a rat model of type 2 diabetes melitus

Experimental and Therapeutic Medicine, 2015

Type 2 diabetes mellitus (T2DM) is a serious health issue worldwide. The disease is characterized by insulin resistance (IR), which leads to dyslipidemia and alterations in the expression levels of a number of genes. Metformin is the standard treatment for T2DM; however, the exact mechanism underlying metformin regulation is not fully understood. The aim of the present study was to investigate the effects of metformin on serum lipid profiles and the expression levels of various genes that are associated with IR, as well as the histopathological changes in the liver and pancreas. A T2DM rat model was established by feeding the rats a high-fat diet for 4 weeks, combined with a dose of streptozotocin (35 mg/kg body weight). Following the successful induction of T2DM, metformin was administered orally (400 mg/kg/day) for 4 weeks. The results indicated that metformin improved the symptoms of IR by normalizing the serum lipid profiles in the diabetic rats. Furthermore, metformin upregulated the expression of insulin receptors and genes associated with lipid metabolism, including acyl-CoA oxidase, carnitine palmitoyl transferase-1 and peroxisome proliferator activated receptor-α. In addition, treatment with metformin downregulated the expression levels of fetuin-A and retinol binding protein-4 (RBP-4), while normalizing the expression of perilipin that had been reduced in the T2DM rats. Metformin administration induced regenerative changes in the hepatocyte cytoplasm and parenchyma. In the pancreas, treatment with metformin was shown to induce positive signaling for insulin and the regeneration of pancreatic β cells. In summary, metformin treatment ameliorated a number of the harmful effects associated with T2DM via the modulation of the expression levels of fetuin-A, RBP-4, perilipin and various genes associated with lipid metabolism, resulting in regenerative changes in the liver and pancreatic cells.

Lipotoxicity in Human Pancreatic Islets and the Protective Effect of Metformin

Diabetes, 2002

Human pancreatic islets from eight donors were incubated for 48 h in the presence of 2.0 mmol/l free fatty acid (FFA) (oleate to palmitate, 2 to 1). Insulin secretion was then assessed in response to glucose (16.7 mmol/l), arginine (20 mmol/l), and glyburide (200 mol/l) during static incubation or by perifusion. Glucose oxidation and utilization and intra-islet triglyceride content were measured. The effect of metformin (2.4 g/ml) was studied because it protects rat islets from lipotoxicity. Glucose-stimulated but not arginine-or glyburide-stimulated insulin release was significantly lower from FFA-exposed islets. Impairment of insulin secretion after exposure to FFAs was mainly accounted for by defective early-phase release. In control islets, increasing glucose concentration was associated with an increase in glucose utilization and oxidation. FFA incubation reduced both glucose utilization and oxidation at maximal glucose concentration. Islet triglyceride content increased significantly after FFA exposure. Addition of metformin to high-FFA media prevented impairment in glucose-mediated insulin release, decline of first-phase insulin secretion, and reduction of glucose utilization and oxidation without significantly affecting islet triglyceride accumulation. These results show that lipotoxicity in human islets is characterized by selective loss of glucose responsiveness and impaired glucose metabolism, with a clear defect in early-phase insulin release. Metformin prevents these deleterious effects, supporting a direct protective action on human ␤-cells.

Molecular and immunohistochemical effects of metformin in a rat model of type 2 diabetes mellitus

Type 2 diabetes mellitus (T2DM) is a serious health issue worldwide. The disease is characterized by insulin resistance (IR), which leads to dyslipidemia and alterations in the expression levels of a number of genes. Metformin is the standard treatment for T2DM; however, the exact mechanism underlying metformin regulation is not fully understood. The aim of the present study was to investigate the effects of metformin on serum lipid profiles and the expression levels of various genes that are associated with IR, as well as the histopathological changes in the liver and pancreas. A T2DM rat model was established by feeding the rats a high‑fat diet for 4 weeks, combined with a dose of streptozotocin (35 mg/kg body weight). Following the successful induction of T2DM, metformin was administered orally (400 mg/kg/day) for symptoms of IR by normalizing the serum lipid profiles in the diabetic rats. Furthermore, metformin upregulated the expression of insulin receptors and genes associated with lipid metabolism, including acyl‑CoA oxidase, carnitine palmitoyl transferase‑1 and peroxisome proliferator activated receptor‑α. In addition, treatment with metformin downregulated the expression levels of fetuin‑A and retinol binding protein‑4 (RBP‑4), while normalizing the expression of perilipin that had been reduced in the T2DM rats. Metformin administration induced regenerative changes in the hepatocyte cytoplasm and parenchyma. In the pancreas, treatment with metformin was shown to induce positive signaling for insulin and the regeneration of pancreatic β cells. In summary, metformin treatment ameliorated a number of the harmful effects associated with T2DM via the modulation of the expression levels of fetuin‑A, RBP‑4, perilipin and various genes associated with lipid metabolism, resulting in regenerative changes in the liver and pancreatic cells.

The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved

Cells, 2022

Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human β-cells exposed to gluco-and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human β-cell stress induced by pro-inflammatory cytokines (which mediate β-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1β plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up-and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 upand 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human β-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for β-cell protection in other types of diabetes, possibly including early T1D.

Blood Glucose Level, Pancreatic Histology and Insulin-Expression in Diabetic Rats Following Metformin and Glibenclamide Administration

2020

Metformin and Glibenclamide are used in the management of type 2 diabetes mellitus (T2DM). There is paucity of information on the efficacy of insulin expression by these anti-diabetic drugs. This study investigated the hypoglycemic, pancreatic histomorphological and insulin alterations following administration of Metformin and Glibenclamide in a T2DM model. Thirty Wistar rats were divided into six groups of five animals each. Two groups served as normal and diabetic controls respectively. Diabetes was induced with Streptozotocin (STZ). Two diabetic groups received 1.43 and 2.86 mg kg-1 body weight (bw) Metformin, while another two groups received 0.07 and 0.14 mg kg=1 bw Glibenclamide respectively. Treatments lasted for four weeks, after which animals were fasted over-night before determination of final blood glucose levels. Pancreas was dissected for histological study. Hypoglycemic effect of Glibenclamide was higher than that of Metformin. The histological features of Glibenclamid...

Mechanism by which metformin reduces glucose production in type 2 diabetes

Diabetes, 2000

To examine the mechanism by which metformin lowers endogenous glucose production in type 2 diabetic patients, we studied seven type 2 diabetic subjects, with fasting hyperglycemia (15.5 +/- 1.3 mmol/l), before and after 3 months of metformin treatment. Seven healthy subjects, matched for sex, age, and BMI, served as control subjects. Rates of net hepatic glycogenolysis, estimated by 13C nuclear magnetic resonance spectroscopy, were combined with estimates of contributions to glucose production of gluconeogenesis and glycogenolysis, measured by labeling of blood glucose by 2H from ingested 2H2O. Glucose production was measured using [6,6-2H2]glucose. The rate of glucose production was twice as high in the diabetic subjects as in control subjects (0.70 +/- 0.05 vs. 0.36 +/- 0.03 mmol x m(-2) min(-1), P < 0.0001). Metformin reduced that rate by 24% (to 0.53 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0009) and fasting plasma glucose concentration by 30% (to 10.8 +/- 0.9 mmol/l, P = 0.000...