Passive appendages generate drift through symmetry breaking (original) (raw)

Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates

PloS one, 2014

Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around ea...

Unsteady bio-fluid dynamics in flying and swimming

Acta Mechanica Sinica, 2017

Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature’s time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body–fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

An inertial mechanism behind dynamic station holding by fish swinging in a vortex street

Scientific Reports

Many aquatic and aerial animal species are known to utilise their surrounding flow field and/or the induced flow field of a neighbour to reduce their physical exertion, however, the mechanism by which such benefits are obtained has remained elusive. In this work, we investigate the swimming dynamics of rainbow trout in the wake of a thrust-producing oscillating hydrofoil. Despite the higher flow velocities in the inner region of the vortex street, some fish maintain position in this region, while exhibiting an altered swimming gait. Estimates of energy expenditure indicate a reduction in the propulsive cost when compared to regular swimming. By examining the accelerations of the fish, an explanation of the mechanism by which energy is harvested from the vortices is proposed. Similar to dynamic soaring employed by albatross, the mechanism can be linked to the non-equilibrium hydrodynamic forces produced when fish encounter the cross-flow velocity generated by the vortex street.

Animal Locomotion ABC

2013

Recent experimental and computational studies of swimming hydrodynamics have contributed significantly to our understanding of how animals swim, but much remains to be done. Ten questions are presented here as an avenue to discuss some of the arenas in which progress still is needed and as a means of considering the technical approaches to address these questions. 1. What is the threedimensional structure of propulsive surfaces? 2. How do propulsive surfaces move in three dimensions? 3. What are the hydrodynamic effects of propulsor deformation during locomotion? 4. How are locomotor kinematics and dynamics altered during unsteady conditions? 5. What is the three-dimensional structure of aquatic animal vortex wakes? 6. To what extent are observed propulsor deformations actively controlled? 7. What is the response of the body and fins of moving animals to external perturbations? 8. How can robotic models help us understand locomotor dynamics of organisms? 9. How do propulsive surface...