Causal Selection and the Pathway Concept, Official (original) (raw)
Related papers
Pathway Analysis and the Search for Causal Mechanisms
Sociological Methods & Research, 2014
The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting cases to study causal mechanisms. We outline a general approach for selecting cases for pathway analysis: a mode of qualitative research that is part of a mixed-method research agenda, which seeks to (1) understand the mechanisms or links underlying an association between some explanatory variable, X1, and an outcome, Y, in particular cases and (2) generate insights from these cases about mechanisms in the unstudied population of cases featuring the X1/ Y relationship. The gist of our approach is that researchers should choose cases for comparison in light of two criteria. The first criterion is the expected relationship between X1/ Y, which ...
Forthcoming in: C. Kenneth Waters and James Woodward (eds.), Philosophical Perspectives on Causal Reasoning in Biology. Minnesota Studies in the Philosophy of Science Vol. XXI. Minneapolis: University of Minnesota Press, 2013
Causal selection is the task of picking out, from a field of known causally relevant factors, some factors as elements of an explanation. The Causal Parity Thesis in the philosophy of biology challenges the usual ways of making such selections among different causes operating in a developing organism. The main target of this thesis is usually gene centrism, the doctrine that genes play some special role in ontogeny, which is often described in terms of information-bearing or programming. This paper is concerned with the attempt of confronting the challenge coming from the Causal Parity Thesis by offering principles of causal selection that are spelled out in terms of an explicit philosophical account of causation, namely an interventionist account. I show that two such accounts that have been developed, although they contain important insights about causation in biology, nonetheless fail to provide an adequate reply to the Causal Parity challenge: Ken Waters's account of actual-difference making and Jim Woodward's account of causal specificity. A combination of the two also doesn't do the trick, nor does Laura Franklin-Hall's account of explanation (in this volume). We need additional conceptual resources. I argue that the resources we need consist in a special class of counterfactual conditionals, namely counterfactuals the antecedents of which describe biologically normal interventions.
Top-down causation: an integrating theme within and across the sciences?
This issue of the journal is focused on ‘top-down (downward) causation'. The words in this title, however, already raise or beg many questions. Causation can be of many kinds. They form our ways of ordering our scientific understanding of the world, all the way from the reductive concept of cause as elementary objects exerting forces on each other, through to the more holistic concept of attractors towards which whole systems move, and to adaptive selection taking place in the context of an ecosystem. As for ‘top’ and ‘down’, in the present scientific context, these are clearly metaphorical, as some of the articles in this issue of the journal make clear. Do we therefore know what we are talking about? The meeting at the Royal Society on which this set of papers is based included philosophers as well as scientists, and some of those (Jeremy Butterfield, Barry Loewer, Alan Love, Samir Okasha and Eric Scerri) have contributed articles to this issue. We would like also to thank those (Claus Kiefer, Peter Menzies, Jerome Feldman and David Papineau) who contributed only to the discussion meeting. Their contributions were also valuable, both at the meeting and by influencing the articles that have been written by others. We include a glossary with this introduction, composed by one of us (O'Connor). The clarification of the use of words and their semantic frames is an important role of philosophy, and this was evident in the discussions at the meeting and is now evident in many of the articles published here. Moreover, philosophical analysis is not limited to the papers by the professional philosophers. The idea of top-down causation is intimately related to concepts of emergence; indeed, it is a key factor in strong theories of emergence.
On Gene's Action and Reciprocal Causation
Foundation of Science, 2011
Advancing the reductionist conviction that biology must be in agreement with the assumptions of reductive physicalism (the upward hierarchy of causal powers, the upward fixing of facts concerning biological levels) A. Rosenberg argues that downward causation is ontologically incoherent and that it comes into play only when we are ignorant of the details of biological phenomena. Moreover, in his view, a careful look at relevant details of biological explanations will reveal the basic molecular level that characterizes biological systems, defined by wholly physical properties, e.g., geometrical structures of molecular aggregates (cells). In response, we argue that contrary to his expectations one cannot infer reductionist assumptions even from detailed biological explanations that invoke the molecular level, as interlevel causal reciprocity is essential to these explanations. Recent very detailed explanations that concern the structure and function of chromatin—the intricacies of supposedly basic molecular level—demonstrate this. They show that what seem to be basic physical parameters extend into a more general biological context, thus rendering elusive the concepts of the basic level and causal hierarchy postulated by the reductionists. In fact, relevant phenomena are defined across levels by entangled, extended parameters. Nor can the biological context be explained away by basic physical parameters defining molecular level shaped by evolution as a physical process. Reductionists claim otherwise only because they overlook the evolutionary significance of initial conditions best defined in terms of extended biological parameters. Perhaps the reductionist assumptions (as well as assumptions that postulate any particular levels as causally fundamental) cannot be inferred from biological explanations because biology aims at manipulating organisms rather than producing explanations that meet the coherence requirements of general ontological models. Or possibly the assumptions of an ontology not based on the concept of causal powers stratified across levels can be inferred from biological explanations. The incoherence of downward causation is inevitable,