APROXIMACIONES Y ERRORES DE REDONDEO (original) (raw)

La importancia de los errores se mencionó por primera vez en el análisis de la caída del paracaidista en el capítulo 1. Recuerde que la velocidad de caída del paracaidista se determinó por métodos analíticos y numéricos. Aunque con la técnica numérica se obtuvo una aproximación a la solución analítica exacta, hubo cierta discrepancia o error, debido a que los métodos numéricos dan sólo una aproximación. Pero en muchos problemas de aplicación en ingeniería no es posible obtener la solución analítica; por lo tanto, no se pueden calcular con exactitud los errores en nuestros métodos numéricos. En tales casos debemos usar aproximaciones o estimaciones de los errores. En seguida, se estudia uno de los dos errores numéricos más comunes: errores de redondeo. Los errores de redondeo se deben a que la computadora tan sólo representa cantidades con un número finito de dígitos. En el siguiente capítulo nos ocuparemos de otra clase importante de error: el de truncamiento. Los errores de truncamiento representan la diferencia entre una formulación matemática exacta de un problema y su aproximación obtenida por un método numérico. Por último, se analizan los errores que no están relacionados directamente con el método numérico en sí. Éstos son equivocaciones, errores de formulación o del modelo, y la incertidumbre en la obtención de los datos, entre otros. 3.1 CIFRAS SIGNIFICATIVAS En esta obra se trata de manera extensa con aproximaciones que se relacionan con el manejo de números. En consecuencia, antes de analizar los errores asociados con los métodos numéricos, es útil repasar algunos conceptos básicos referentes a la representación aproximada de los números mismos. El concepto de cifras o dígitos significativos se ha desarrollado para designar formalmente la confiabilidad de un valor numérico. Las cifras significativas de un número son aquellas que pueden utilizarse en forma confiable. Se trata del número de dígitos que se ofrecen con certeza, más uno estimado. 3.2 EXACTITUD Y PRECISIÓN Los errores en cálculos y medidas se pueden caracterizar con respecto a su exactitud y su precisión. La exactitud se refiere a qué tan cercano está el valor calculado o medido del valor verdadero. La precisión se refiere a qué tan cercanos se encuentran, unos de otros, diversos valores calculados o medidos. Estos conceptos se ilustran gráficamente utilizando la analogía con una diana en la práctica de tiro. La inexactitud (conocida también como sesgo) se define como una desviación sistemática del valor verdadero. La imprecisión (también llamada incertidumbre), por otro lado, se refiere a la magnitud en la dispersión de los disparos. Los métodos numéricos deben ser lo suficientemente exactos o sin sesgo para satisfacer los requisitos de un problema particular de ingeniería. También deben ser suficientemente precisos para ser adecuados en el diseño de la ingeniería, En este libro se usa el término error para representar