Duchenne and Becker muscular dystrophy: a molecular and immunohistochemical approach (original) (raw)

Dystrophin analysis using a panel of anti-dystrophin antibodies in Duchenne and Becker muscular dystrophy

Journal of Neurology, …, 1993

Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, was studied in 19 patients with Xp2l disorders and in 25 individuals with non-Xp21 muscular dystrophy. Antibodies raised to seven different regions spanning most of the protein were used for immunocytochemistry. In all patients specific dystrophin staining anomalies were detected and correlated with clinical severity and also gene deletion. In patients with Becker muscular dystrophy (BMD) the anomalies detected ranged from interand intra-fibre variation in labelling intensity with the same antibody or several antibodies to general reduction in staining and discontinuous staining. In vitro evidence of abnormal dystrophin breakdown was observed reanalysing the muscle ofpatients, with BMD and not that of non-Xp2l dystrophies, after it had been stored for several months. A number of patients with DMD showed some staining but this did not represent a diagnostic problem. Based on the data presented, it was concluded that immunocytochemistry is a powerful technique in the prognostic diagnosis of Xp2l muscular dystrophies.

Dystrophin analysis in carriers of Duchenne and Becker muscular dystrophy

Neurology, 2005

Associations between clinical phenotype (muscle weakness, dilated cardiomyopathy) and dystrophin abnormalities in muscle tissue among definite carriers of Duchenne (DMD) and Becker muscular dystrophy (BMD) were investigated. No associations between dystrophin abnormalities and clinical variables in DMD/BMD carriers were found. Because 26% of nonmanifesting carriers have dystrophin-negative fibers, this might be used in suspected DMD/BMD carriers in whom DNA analysis fails to give an answer about their carrier risk.

Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies

Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD) and Becker (BMD) muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.

Diagnostic Value of Dystrophin Immunostaining in the Diagnosis of Duchenne and Becker Muscular Dystrophy Patients

Open Access Macedonian Journal of Medical Sciences

Background: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive muscular disorders caused by the absence or reduction of the muscle cytoskeletal protein dystrophin. Standard procedures to detect deletion and duplication of the DMD gene use Multiplex Ligation-Dependent Probe Amplification (MLPA). However, genetic testing, such as MLPA, is not covered by the national insurance scheme in Indonesia. Immunohistochemical (IHC) staining of dystrophin from muscle biopsy in the form of Formalin-Fixed Paraffin-Embedded (FFPE) specimens can be an alternative method to detect dystrophin expression in protein levels to establish the diagnosis of DMD or BMD. Objectives: To determinate sensitivity, specificity and accuracy of IHC analysis of dystrophin in DMD/BMD patient in comparison with the standard genetic testing, MLPA. Methods: Twenty-six patients enrolled in this study were clinically diagnosed as DMD/BMD in Dr. Sardjito Hospital and Universitas Gadj...

Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

Amer J Med Genet, 1994

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD,BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these t o exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes.

Analysis of dystrophin gene in Iranian Duchenne and Becker muscular dystrophies patients and identification of a novel mutation

Neurological Sciences, 2015

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most frequent muscular dystrophies. Present study aimed to determine the frequency of dystrophin gene alterations in Iranian DMD/ BMD patients using molecular techniques. 146 Iranian DMD/BMD patients have been analyzed using two devised sets of multiplex polymerase chain reaction (M-PCR) followed by multiple ligation-dependent probe amplification (MLPA). Two isolated DMD and BMD patients were analyzed by DNA sequencing. 30.9 % of patients had single-exon deletion while group and contiguous exon deletions were identified in 41 % of the patients. The most numerous exon deletions included exons 45-50 and were identified in the first M-PCR set. Deletion detection rate was 99 % in first M-PCR set and remaining deletions (1 %) were identified in the second M-PCR set. MLPA analysis showed that there were two exons 3-5 and 41-43 duplications (1.4 %) in a BMD and a DMD patient, respectively. Two nonsense mutations including c.633dupA and c.6283 C[T were, respectively, found in a DMD and BMD patient in which c.633dupA has not ever been reported in DMD mutation database and was pathogenic mutation. Besides the report of frequency of dystrophin gene alteration in a subset of Iranian DMD/BMD patients, it was revealed that the proposed M-PCR protocol can be useful in the initial step of molecular diagnosis of DMD/ BMD. Exon sequencing would be the final step in determining the mutation status of DMD/BMD patients following MLPA.

Deletion mutations in the dystrophin gene of Saudi patients with Duchenne and Becker muscular dystrophy

Saudi medical journal, 2002

The deletion in the dystrophin gene has been reported for many ethnic groups, but until now the mutations in this gene have not been thoroughly investigated in Saudi patients with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). We examined the deletion pattern in the dystrophin gene of the Saudi patients applying multiplex-polymerase chain reaction (PCR). The aim of this study is to describe the outcome of our initial effort to identify mutations in the dystrophin gene in a representative group of Saudi patients with DMD and BMD. Genomic deoxyribose nucleic acid was isolated from 41 patients with DMD and BMD (27 patients confirmed by muscle biopsy and 14 patients with clinical suspicion), 3 patients with limb girdle muscular dystrophy, 12 male relatives of the patients, and 5 healthy Saudi volunteers. A total of 25 exons around the deletion prone regions (hot spots) of the dystrophin gene were amplified. The study was carried out at the King Fahad National Gua...

Deletion patterns of dystrophin gene in Hungarian patients with Duchenne/Becker muscular dystrophies

Neuromuscular Disorders, 1999

Deletion pattern analysis of the dystrophin gene was performed in 159 Hungarian patients with Duchenne/Becker muscular dystrophy. In 116 cases (73% of total patients), exon deletions were detected by PCR amplification. In 37 patients (31.9% of patients with a deletion) one exon was deleted, while five or more exons were missing in 40 children (34.4%). With respect to the proximal-distal