Splicing of NOD2 (CARD 15) RNA transcripts (original) (raw)

Species-specific engagement of human nucleotide oligomerization domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon intracellular bacterial infection: role of Crohn's associated NOD2 gene variants

Clinical and experimental immunology, 2015

Recognition of bacterial peptidoglycan-derived muramyl-dipeptide (MDP) by nucleotide oligomerization domain 2 (NOD2) induces crucial innate immune responses. Most bacteria carry the N-acetylated form of MDP (A-MDP) in their cell membranes, whereas N-glycolyl MDP (G-MDP) is typical for mycobacteria. Experimental murine studies have reported G-MDP to have a greater NOD2-stimulating capacity than A-MDP. As NOD2 polymorphisms are associated with Crohn's disease (CD), a link has been suggested between mycobacterial infections and CD. Thus, the aim was to investigate if NOD2 responses are dependent upon type of MDP and further to determine the role of NOD2 gene variants for the bacterial recognition in CD. The response pattern to A-MDP, G-MDP, Mycobacterium segmatis (expressing mainly G-MDP) and M. segmatisΔnamH (expressing A-MDP), Listeria monocytogenes (LM) (an A-MDP-containing bacteria) and M. avium paratuberculosis (MAP) (a G-MDP-containing bacteria associated with CD) was investi...

Species‐specific engagement of human NOD2 and TLR signaling upon intracellular bacterial infection: Role of Crohn's associated NOD2 gene variants

Recognition of bacterial peptidoglycan-derived muramyl-dipeptide (MDP) by nucleotide oligomerization domain 2 (NOD2) induces crucial innate immune responses. Most bacteria carry the N-acetylated form of MDP (A-MDP) in their cell membranes, whereas N-glycolyl MDP (G-MDP) is typical for mycobacteria. Experimental murine studies have reported G-MDP to have a greater NOD2-stimulating capacity than A-MDP. As NOD2 polymorphisms are associated with Crohn's disease (CD), a link has been suggested between mycobacterial infections and CD. Thus, the aim was to investigate if NOD2 responses are dependent upon type of MDP and further to determine the role of NOD2 gene variants for the bacterial recognition in CD. The response pattern to A-MDP, G-MDP, Mycobacterium segmatis (expressing mainly G-MDP) and M.

Consequence of functional Nod2 and Tlr4 mutations on gene transcription in Crohn’s disease patients

Journal of Molecular Medicine, 2005

The concept that mutations in germ-line encoded pattern recognition receptors with immune activating functions are associated with an increased incidence in Crohn's disease (CD) is gaining acceptance. Whether these mutations have similar or distinct effects on cellular physiology remains obscure. The incidence of three single nucleotide polymorphisms (SNPs) within the Nod2 gene and one functional SNP within both the Tlr4 and Tlr5 gene in a Dutch cohort of 637 patients with inflammatory bowel disease and 127 controls was investigated. The functional consequence of mutant NOD2 and TLR4 was investigated by comparing gene expression profiles after stimulation of monocyte-derived dendritic cells (DCs) from homozygous TLR4-and NOD2-mutant patients with lipopolysaccharides and peptidoglycan, respectively. We observed that the R702W and 1007fs Nod2 alleles and the A299G Tlr4 alleles were significantly more prevalent in patients with CD as compared to healthy controls or patients with ulcerative colitis. The phenotype of TLR4-and NOD2mutant DCs is distinct, but a large number of genes are up-or down-regulated concordantly. These data provide a concept for the genetic basis of CD; mutations in innate immunity cause similar effects on gene transcription and finally result in comparable clinical disease presentation.

Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan

Gastroenterology, 2003

Background & Aims: The NOD2 variants R702W, G908R, and L1007fsinsC are strongly associated with Crohn's disease (CD) in both European and American populations, but whether this susceptibility extends to all ethnic groups remains unknown. Except for the L1007fsinsC mutation, which produces a truncated NOD2 protein, the functional activity of the major CD-associated variants G908R and R702W is unknown. Methods: Individuals were genotyped for R702W, G908R, and L1007fsinsC. The ability of G908R, R702W, and L1007fsinsC variants in the presence and absence of P268S to confer responsiveness to lipopolysaccharide (LPS) and peptidoglycan (PGN) was determined in HEK293T kidney cells. Results: G908R and L1007fsinsC, but not R702W, were associated with disease susceptibility in Ashkenazi Jews. Ashkenazi Jews with CD had significantly higher allele frequency carriage of G908R and lower carriage of R702W compared with non-Jewish whites with CD. Functional studies revealed that the G908R, R702W, and L1007fsinsC variants in the presence and absence of P268S are defective in their ability to respond to bacterial LPS and PGN, whereas P268S alone exhibited wild-type activity. Conclusions: R702W is not associated with susceptibility to CD in Ashkenazi Jews. The G908R, R702W, and L1007fsinsC variants share a common signaling defect in response to bacterial components, providing evidence for a unifying molecular mechanism whereby NOD2 mutations contribute to disease susceptibility.

A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease

Nature, 2001

Crohn's disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohn's disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease. Wild-type NOD2 activates nuclear factor NF-κB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohn's disease, and suggest a link between an innate immune response to bacterial components and development of disease.

The effect of NOD2 activation on TLR2-mediated cytokine responses is dependent on activation dose and NOD2 genotype

Genes and Immunity, 2008

The mechanism by which mutations in NOD2 predispose to Crohn's disease (CD) is incompletely understood. In mice, NOD2 has been found to function as a negative regulator of Toll-like receptor 2 (TLR2) signaling. In contrast, studies in humans so far showed no negative regulatory interaction between NOD2 and TLR2, and in fact suggest a synergistic effect between the two. Here, we show that this interaction is dose dependent. Adding low doses of muramyl dipeptide (MDP) to TLR2 primed monocytes results in a significant increase in cytokine production, whereas adding higher doses of MDP led to a striking downregulation of the responses. This downregulation by high-dose MDP does not occur in monocytes from NOD2-deficient patients. The inhibitory role of NOD2 at high concentrations of MDP implicates a safety mechanism to prevent exaggerated antibacterial immune responses in the gut to high or perpetuating bacterial load. This regulatory mechanism is lost in NOD2deficient CD patients.