Getting to Scale with Environmental Flow Assessment: The Watershed Flow Evaluation Tool (original) (raw)

Predictive mapping of the biotic condition of conterminous U.S. rivers and streams

Ecological Applications, 2017

Understanding and mapping the spatial variation in stream biological condition could provide an important tool for conservation, assessment, and restoration of stream ecosystems. The USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) summarizes the percent of stream lengths within the conterminous US that are in good, fair, or poor biological condition based on a multimetric index of benthic invertebrate assemblages. However, condition is usually summarized at regional or national scales, and these assessments do not provide substantial insight into the spatial distribution of conditions at unsampled locations. We used random forests to model and predict the probable condition of several million kilometers of streams across the conterminous US based on nearby and upstream landscape features, including human-related alterations to watersheds. To do so, we linked NRSA sample sites to the USEPA's StreamCat Dataset; a database of several hundred landscape metrics for all 1:100,000-scale streams and their associated watersheds within the conterminous US. The StreamCat data provided geospatial indicators of nearby and upstream land use, land cover, climate, and other landscape features for modeling. Nationally, the model correctly predicted the biological condition class of 75% of NRSA sites. Although model evaluations suggested good discrimination among condition classes, we present maps as predicted probabilities of good condition, given upstream and nearby landscape settings. Inversely, the maps can be interpreted as the probability of a stream being in poor condition, given human-related watershed alterations. These predictions are available for download from the USEPA's StreamCat website (https://www.epa.gov/national-aquatic-resource-surveys/streamcat). Finally, we illustrate how these predictions could be used to prioritize streams for conservation or restoration.

An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems

Fundamental and Applied Limnology / Archiv für Hydrobiologie, 2015

In regulated rivers, managers must evaluate competing flow release scenarios that attempt to balance both human and natural needs. Meeting these natural flow needs is complex due to the myriad of interacting physical and hydrological factors that affect ecosystems. Tools that synthesize the voluminous scientific data and models on these factors will facilitate management of these systems. Here, we present the Riverine Environmental Flow Decision Support System (REFDSS), a tool that enables evaluation of competing flow scenarios and other variables on instream habitat. We developed a REFDSS for the Upper Delaware River, USA, a system that is regulated by three headwater reservoirs. This version of the REFDSS has the ability to integrate any set of spatially explicit data and synthesizes modeled discharge for three competing management scenarios, flow-specific 2-D hydrodynamic modeled estimates of local hydrologic conditions (e.g., depth, velocity, shear stress, etc.) at a fine pixel-scale (1 m 2 ), and habitat suitability criteria (HSC) for a variety of taxa. It contains all individual model outputs, computationally integrates these data, and outputs the amount of potentially available habitat for a suite of species of interest under each flow release scenario. Users have the flexibility to change the time period of interest and vary the HSC. The REFDSS was developed to enable side-by-side evaluation of different flow management scenarios and their effects on potential habitat availability, allowing managers to make informed decisions on the best flow scenarios. An exercise comparing two alternative flow scenarios to a baseline scenario for several key species is presented. The Upper Delaware REFDSS was robust to minor changes in HSC (± 10 %). The general REFDSS platform was developed as a user-friendly Windows desktop application that was designed to include other potential parameters of interest (e.g., temperature) and for transferability to other riverine systems.

Using regional scale flow-ecology modeling to identify catchments where fish assemblages are most vulnerable to changes in water availability

Freshwater Biology

1. Streamflow is essential for maintaining healthy aquatic ecosystems and for supporting human water supply needs. Changes in climate, land use and water use practices may alter water availability. Understanding the potential effect of these changes on aquatic ecosystems is critical for long-term water management to maintain a balance between water for human consumption and ecosystem needs. 2. Fish species data and streamflow estimates from a rainfall-runoff and flow routing model were used to develop boosted regression tree models to predict the relationship between streamflow and fish species richness (FSR) under plausible scenarios of (1) water withdrawal, (2) climate change and (3) increases in impervious surfaces in the Piedmont ecoregion of North Carolina, U.S.A. Maximum monthly flow, the fraction of total flow originating from impervious surface runoff, coefficient of monthly streamflow variability, and the specific river basin accounted for 50% of the variability in FSR. This model was used to predict FSR values for all twelve-digit Hydrological Unit Code catchments (HUC-12s) in the North Carolina Piedmont under current flow conditions and under water withdrawal, climate change and impervious surface scenarios. 3. Flow-ecology modeling results indicate that predicted FSR declined significantly with increased water withdrawals. However, the magnitude of decline varied geographically. A "hot-spot" analysis was conducted based on predicted changes in FSR under each scenario to understand which HUC-12s were most likely to be affected by changes in water withdrawals, climate and impervious surfaces. Under the 20% withdrawal increase scenario, 413 of 886 (47%) HUC-12s in the study area were predicted to lose one or more species. HUC-12s in the Broad, Catawba, Yadkin and Cape Fear river basins were most susceptible to species loss. 4. These findings may help decision making efforts by identifying catchments most vulnerable to changing water availability. Additionally, FSR-discharge modeling results can assist resource agencies, water managers and stakeholders in assessing the effect of water withdrawals in catchments to better support the protection and long-term conservation of species.

A watershed assessment tool for evaluating ecological condition, proposed impacts, and restoration potential at multiple scales

2005

: In rapidly developing regions of the United States, planning and regulatory agencies are faced with the difficult task of protecting and enhancing natural resources while accommodating economic development. There is a general consensus among resource management professionals that the most effective way to approach the complex issues involved is to consider them at the watershed level, where the fundamental connection among all components of the landscape is the network of streams that drain the basin (Heathcote 1998, National Research council 1999, Newbold 2002, Ogg and Keith 2002). The watershed perspective promotes consideration of the linkages among landscape components, such as the effects of land use on stream water quality and discharge, or the potential influence of water diversions or storage on the habitat quality of downstream channels, wetlands, and riparian areas.

A scenario-based approach to integrating flow-ecology research with watershed development planning

The ability to anticipate urbanization impacts on streamflow regimes is critical to developing proactive strategies that protect aquatic ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness of integrated stormwater management (i.e., integration of strategic land-use organization with site-scale stormwater BMPs) or its absence, and two regional growth patterns for maintaining streamflow regimes. We applied a three-step sequence to three urbanizing catchment basins in Oregon, to: (1) simulate landscape change under four future development scenarios with the agentbased model Envision; (2) model resultant hydrological change using the Soil and Water Assessment Tool (SWAT); and (3) assess scenario impacts on streamflow regimes using 10 flow metrics that encompass all major flow components. Our results projected significant flow regime changes in all three basins. Urbanization impacts aligned closely with increases in flow regime flashiness and severity of extreme flow events. Most changes were associated with negative impacts on native aquatic organisms in the Pacific Northwest. Scenario comparisons highlighted the importance of integrated stormwater management for reducing flow alterations, and secondarily, compact growth. Based on a flow metric sensitivity typology, six flow metrics were insensitive to development in multiple basins, and four were sensitive to development and manageable with mitigation in multiple basins. Only three metrics were ever sensitive to development and resistant to mitigation, and only in one basin each. Our findings call for regional flow-ecology research that identifies the ecological significance of each flow metric, explores potential remedies for resistant ones and develops specific targets for manageable ones.

Application of the Ecological Flows Tool to complement water planning efforts in the Delta & Sacramento River: multi-species effects analysis and ecological flow criteria

Beginning with the launch of the current phase of this project in October 2008 and extending through to its conclusion in 2014, the Ecological Flows Tool (EFT) project has had the goal of improving water planning in the Sacramento River and the San Joaquin-Sacramento Delta. The waters which flow through these two ecoregions are among the most highly regulated anywhere in the world, serving over 20 million people, supporting a $40 billion agriculture industry, and sustaining diverse, although highly altered, ecosystems. Because of a chronic inability to find "balance" in the trade-offs among competing objectives and resource demands, the Delta is universally regarded to be in crisis. A central challenge in managing the Sacramento River and Delta is evaluating how alternative river management scenarios are likely to impact different components of the ecosystem. Our project directly addresses this challenge. Aided by over 70 scientists and managers since the project’s 2004 in...

Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed in the Southeast U.S

The Science of the total environment, 2018

This study assessed the combined effects of increased urbanization and climate change on streamflow in the Yadkin-Pee Dee watershed (North Carolina, USA) and focused on the conversion from forest to urban land use, the primary land use transition occurring in the watershed. We used the Soil and Water Assessment Tool to simulate future (2050-2070) streamflow and baseflow for four combined climate and land use scenarios across the Yadkin-Pee Dee River watershed and three subwatersheds. The combined scenarios pair land use change and climate change scenarios together. Compared to the baseline, projected streamflow increased in three out of four combined scenarios and decreased in one combined scenario. Baseflow decreased in all combined scenarios, but decreases were largest in subwatersheds that lost the most forest. The effects of land use change and climate change were additive, amplifying the increases in runoff and decreases in baseflow. Streamflow was influenced more strongly by c...

evelopment and assessment of a landscape-scale ecological threat index or the Lower Colorado River Basin raig

2010

Anthropogenic disturbances impact freshwater biota but are rarely incorporated into conservation planning due to the difficulties in quantifying threats. There is currently no widely accepted method to quantify disturbances, and determining how to measure threats to upstream catchments using disturbance metrics can be time consuming and subjective. We compared four watershed-scale ecological threat indices for the Lower Colorado River Basin (LCRB) using landscape-level threats of land use (e.g., agricultural and urban lands), waterway development and diversions (e.g., number of canals, dams), and human development (e.g., road and railroads density, pollution sites). The LCRB is an ideal region to assess ecological threat indices because of the increasing need for conservation to ensure the persistence of native fishes in highly altered habitat. Each threat was measured for severity (i.e., level of influence on the upstream watershed) and frequency throughout each watershed; both sev...

HYDROGEOMORPHIC CLASSIFICATION OF WASHINGTON STATE RIVERS TO SUPPORT EMERGING ENVIRONMENTAL FLOW MANAGEMENT STRATEGIES

River Research and Applications, 2012

As demand for fresh water increases in tandem with human population growth and a changing climate, the need to understand the ecological tradeoffs of flow regulation gains greater importance. Environmental classification is a first step towards quantifying these tradeoffs by creating the framework necessary for analysing the effects of flow variability on riverine biota. Our study presents a spatially explicit hydrogeomorphic classification of streams and rivers in Washington State, USA and investigates how projected climate change is likely to affect flow regimes in the future. We calculated 99 hydrologic metrics from 15 years of continuous daily discharge data for 64 gauges with negligible upstream impact, which were entered into a Bayesian mixture model to classify flow regimes into seven major classes described by their dominant flow source as follows: groundwater (GW), rainfall (RF), rain-with-snow (RS), snow-and-rain (SandR), snow-with-rain (SR), snowmelt (SM) and ultra-snowmelt (US). The largest class sizes were represented by the transitional RS and SandR classes (14 and 12 gauges, respectively), which are ubiquitous in temperate, mountainous landscapes found in Washington. We used a recursive partitioning algorithm and random forests to predict flow class based on a suite of environmental and climate variables. Overall classification success was 75%, and the model was used to predict normative flow classes at the reach scale for the entire state. Application of future climate change scenarios to the model inputs indicated shifts of varying magnitude from snow-dominated to rain-dominated flow classes. Lastly, a geomorphic classification was developed using a digital elevation model (DEM) and climatic data to assign stream segments as either dominantly able or unable to migrate, which was cross-tabulated with the flow types to produce a 14-tier hydrogeomorphic classification. The hydrogeomorphic classification provides a framework upon which empirical flow alteration-ecological response relationships can subsequently be developed using ecological information collected throughout the region.

A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers

River Research and Applications, 2003

Recognition of the escalating hydrological alteration of rivers on a global scale and resultant environmental degradation, has led to the establishment of the science of environmental flow assessment whereby the quantity and quality of water required for ecosystem conservation and resource protection are determined.A global review of the present status of environmental flow methodologies revealed the existence of some 207 individual methodologies, recorded for 44 countries within six world regions. These could be differentiated into hydrological, hydraulic rating, habitat simulation and holistic methodologies, with a further two categories representing combination‐type and other approaches.Although historically, the United States has been at the forefront of the development and application of methodologies for prescribing environmental flows, using 37% of the global pool of techniques, parallel initiatives in other parts of the world have increasingly provided the impetus for signif...