Aircraft Conceptual Design Optimization (original) (raw)

design is an inherently multidisciplinary activity that requires different models and tools for various aspects of the design. At Linköping University a novel design framework is being developed to support the initial conceptual design phase of new aircraft. By linking together various modules via a userfriendly spreadsheet interface, the framework allows multidisciplinary analysis and optimizations to be carried out. The geometrical model created with a high-end CAD system, contains all the available information on the product and thus it plays a central role in the framework. In this work great attention has been paid to techniques that allow creating robust yet highly flexible CAD models. Two different case studies are presented. The first one is a hypothetic wing-box design that is studied with respect to aerodynamic efficiency and loads, and to structural analysis. In this study two approaches were compared. In one case the wing-box design was optimized with a fixed number of structural elements, where only dimensions and position were allowed to change. Then the same wing-box was analyzed allowing also the number of structural elements to vary. Thus only the parts that are required are left and a more efficient design can be obtained. In the second case study a mission simulation is performed on a UAV-type aircraft. Required data for the simulation are gathered from the CAD model and from aerodynamic analysis carried out with PANAIR, a high order panel code. The obtained data are then used as inputs parameters for flight simulation in order to determined hydraulic systems characteristics.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.