Protein Traffic Is an Intracellular Target in Alcohol Toxicity (original) (raw)
Related papers
Review Protein Traffic Is an Intracellular Target in Alcohol Toxicity
2011
Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.
Pharmacology Biochemistry and Behavior, 2011
Despite extensive description of the damaging effects of chronic alcohol exposure on brain structure, mechanistic explanations for the observed changes are just emerging. To investigate regional brain changes in protein expression levels following chronic ethanol treatment, one rat per sibling pair of male Wistar rats was exposed to intermittent (14 hr/day) vaporized ethanol, the other to air for 26 weeks. At the end of 24 weeks of vapor exposure, the ethanol group had blood ethanol levels averaging 450 mg %, had not experienced a protracted (>16 hr) withdrawal from ethanol, and revealed only mild evidence of hepatic steatosis. Extracted brains were microdissected to isolate the prefrontal cortex (PFC), dorsal striatum (STR), corpus callosum genu (CCg), CC body (CCb), anterior vermis (AV), and anterior dorsal lateral cerebellum (ADLC) for protein analysis with two-dimensional gel electrophoresis. Expression levels for 54 protein spots were significantly different between the ethanol-and air-treated groups. Of these 54 proteins, tandem mass spectroscopy successfully identified 39 unique proteins, the levels of which were modified by ethanol treatment: 13 in the PFC, 7 in the STR, 2 in the CCg, 7 in the CCb, 7 in the AV, and 5 in the ADLC. The functions of the proteins altered by chronic ethanol exposure were predominately associated with neurotransmitter systems in the PFC and cell metabolism in the STR. Stress response proteins were elevated only in the PFC, AV, and ADLC perhaps supporting a role for frontocerebellar circuitry disruption in alcoholism. Of the remaining proteins, some had functions associated with cytoskeletal physiology (e.g., in the CCb) and others with transcription/ translation (e.g., in the ADLC). Considered collectively, all but 4 of the 39 proteins identified in the present study have been previously identified in ethanol gene-and/or protein-expression studies lending support for their role in ethanol-related brain alterations.
Ethanol perturbs the secretory pathway in astrocytes
Neurobiology of Disease, 2005
Ethanol exposure induces retention of glycoproteins in growing astrocytes. We examined the intracellular sites at which this retention occurs and investigated whether this effect is accompanied by alterations in the Golgi complex and microtubular system. We studied the effects of ethanol on the Golgi complex structure, as well as on the secretory pathway functionality by monitoring both the transport of the VSV-G protein and the protein levels of several molecules involved in the regulation of this pathway. Ethanol was found to delay VSV-G transport, modify Golgi complex morphology, and reduce the number of secretory vesicles. Moreover, ethanol affected the levels of mannosidase II, p58, BCOP, rbet1, and several Rab GTPases. It also affected microtubule organization and polymerization and the levels of the motor proteins kinesin and dynein. Most of these effects were dosedependent. These alterations, together with those previously reported concerning biosynthesis of glycoconjugates, provide novel insights into how ethanol impairs brain development. D
Neurotoxicity Research, 2014
The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic alcohol exposure in neuronal cells, which may have negative repercussions for the development and maintenance of their polarized morphology and function.
Endocytosis in cultured neurons is altered by chronic alcohol exposure
Toxicological sciences : an official journal of the Society of Toxicology, 2010
Endocytosis is required for many cellular pivotal processes, including membrane recycling, nutrient uptake, and signal transduction. This complex process is particularly relevant in polarized cells, such as neurons. Previous studies have demonstrated that alcohol alters intracellular traffic, including endocytosis, in several cell types. However, information on the effect of chronic alcohol exposure on this process in neurons is scarce. As an approach, we investigated the effect of alcohol exposure on the internalization of two widely used endocytic markers, albumin and transferrin, in developing hippocampal neurons in primary culture. The effect of this treatment on the levels of several representative proteins involved in the endocytic process was also analyzed. Some of these proteins are also involved in the organization of the actin cytoskeleton. Pretreatment of cells with inhibitors chlorpromazine or nystatin indicates that albumin is internalized mainly by caveolin-dependent e...
Glycosylation is altered by ethanol in rat hippocampal cultured neurons
Alcohol and …, 2006
Aims: Glycoproteins, such as adhesion molecules and growth factors, participate in the regulation of nervous system development. Ethanol affects the synthesis, intracellular transport, distribution, and secretion of N-glycoproteins in different cell types, including astrocytes and hepatocytes, suggesting alterations in the glycosylation process. We analysed the effect of exposure to low doses of ethanol (30 mm, 7 days) on glycosylation in cultured hippocampal neurons. Methods: Neurons were incubated for short (5 min) and long (90 min) periods with the radioactively labelled carbohydrate precursors 2-deoxy-glucose, N-acetyl-D-mannosamine and mannose. The uptake and metabolism of these precursors, as well as the radioactivity distribution in protein gels, were analysed. The levels of the glucose transporters GLUT1 and GLUT3 were also determined. Results: Ethanol exposure reduces the synthesis of proteins, DNA and RNA and decreased the uptake of mannose, but not of 2-deoxy-glucose and N-acetyl-D-mannosamine, and it increased the protein levels of both glucose transporters. Moreover, it altered the carbohydrate moiety of several proteins. Finally, alcohol treatment results in an increment of cell surface glycoconjugates containing terminal non-reduced mannose. Conclusions: Alcohol-induced alterations in glycosylation of proteins in neurons could be a key mechanism involved in the teratogenic effects of alcohol exposure on brain development.
Effects of ethanol on GLUT1 protein and gene expression in rat astrocytes
Metabolic Brain Disease, 1996
Effects of ethanol on glucose transporter gene expression were examined in cultured rat astrocytes . Exposure to 5Q or 100 mM ethanol for 18 hours significantly inhibited hexose uptake and reduced the number of glucose transporters, as indicated by binding studies with cytochalasin B . Indirect immunofluorescence and immunoperoxidase staining showed marked reduction of the GLUTI glucose transporter by exposure to 100 mM ethanol for 5 or 18 hours, but no obvious change in response to 50 mM ethanol . Western blot analysis showed GLUTI protein levels to be decreased by 52±12% (p<0 .05) after exposure to 100 mM ethanol for 18 hours . In situ hybridization histochemistry indicated an increase in steady-state GLUTI mRNA in astrocytes exposed to 50 or 100 mM ethanol for 5 or 18 hours . Quantitation of GLUT1 mRNA levels by northern blot analysis showed that GLUTI mRNA levels were increased by 59 and 112% in cells treated for 5 h with 50 and 100 mM ethanol, respectively . A similar effect was observed after treatment for 18 hours, but ethanol did not alter actin gene expression. Experiments using actinomycin D to block RNA synthesis suggest that this increase in steady-state mRNA level results from increased message stability . These results suggest that ethanol acts on GLUTI gene expression at the post-transcriptional level .
Alcohol, 2009
Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to alcohol and associated with hypoplasia and impaired neuronal migration in the cerebellum. Neuronal survival and motility are stimulated by insulin and insulin-like growth factor (IGF), whose signaling pathways are major targets of ethanol neurotoxicity. To better understand the mechanisms of ethanol-impaired neuronal migration during development, we examined the effects of chronic gestational exposure to ethanol on aspartyl (asparaginyl)-β-hydroxylase (AAH) expression, because AAH is regulated by insulin/ IGF and mediates neuronal motility. Pregnant Long-Evans rats were pair-fed isocaloric liquid diets containing 0, 8, 18, 26, or 37% ethanol by caloric content from gestation day 6 through delivery. Cerebella harvested from postnatal day 1 pups were used to examine AAH expression in tissue, and neuronal motility in Boyden chamber assays. We also used cerebellar neuron cultures to examine the effects of ethanol on insulin/IGF-stimulated AAH expression, and assess the role of GSK-3β-mediated phosphorylation on AAH protein levels. Chronic gestational exposure to ethanol caused dose-dependent impairments in neuronal migration and corresponding reductions in AAH protein expression in developing cerebella. In addition, prenatal ethanol exposure inhibited insulin and IGF-I-stimulated directional motility in isolated cerebellar granule neurons. Ethanol-treated neuronal cultures (50 mM × 96 h) also had reduced levels of AAH protein. Mechanistically, we showed that AAH protein could be phosphorylated on Ser residues by GSK-3β, and that chemical inhibition of GSK-3β and/or global Caspases increases AAH protein in both control-and ethanol-exposed cells. Ethanol-impaired neuronal migration in FASD is associated with reduced AAH expression. Because ethanol increases the activities of both GSK-3β and Caspases, the inhibitory effect of ethanol on neuronal migration could be mediated by increased GSK-3β phosphorylation and Caspase degradation of AAH protein.
Neurochemical Research, 1991
In the present work we have analyzed, using immunoblotting and immunofluorescence techniques, the evolution of several cytoskeletal proteins during the development of astrocytes in primary culture. The effect of prenatal exposure to alcohol on these proteins was also evaluated. Microtubular protein c~-tubulin decreased approximately 47% from 4 to 7 days after which its content remained practically constant. Immunofluorescence studies showed also that the content of e~-tubulin was greater at day 4 of culture. This increase in fluorescence was coincident with the presence of globular particles which were found in interphase astrocytes and stained with both anti c~-and antf-[3-tubulin. These structures appeared only in proliferating cells. Glial fibrillary acidic protein (GFAP) and vimentin were analyzed as intermediate filament (IF) proteins. GFAP, in cytoskeletal preparations, increased regularly for 14 days followed by a decrease to day 21. In contrast, vimentin showed a progressive increase throughout the entire culture period. Fluorescence studies revealed some differences between the IF distribution patterns of GFAP and vimentin.