Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations (original) (raw)
Abstract
Gene expression biomarkers (GEBs) are emerging as powerful diagnostic tools for identifying and characterizing coral stress. Their capacity to detect sublethal stress prior to the onset of signs at the organismal level that might already indicate significant damage makes them more precise and proactive compared to traditional monitoring techniques. A high number of candidate GEBs, including certain heat shock protein genes, metabolic genes, oxidative stress genes, immune response genes, ion transport genes, and structural genes have been investigated, and some genes, including hsp16, Cacna1, MnSOD, SLC26, and Nf-kB, are already showing excellent potential as reliable indicators of thermal stress in corals. In this mini-review, we synthesize the current state of knowledge of scleractinian coral GEBs and highlight gaps in our understanding that identify directions for future work. We also address the underlying sources of variation that have sometimes led to contrasting results between studies, such as differences in experimental setup and approach, intrinsic variation in the expression profiles of different experimental organisms (such as between different colonies or their algal symbionts), diel cycles, varying thermal history, and different expression thresholds. Despite advances in our understanding there is still no universally accepted biomarker of thermal stress, the molecular response of corals to heat stress is still unclear, and biomarker research in Symbiodinium still lags behind that of the host. These gaps should be addressed in future work.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (113)
- Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
- Gene expression biomarkers of heat stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.1. Heat shock genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.1. hsp70 is an early responder to general stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
- 1.2. hsp90 is an early responder to general stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
- Tcp-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
- 2.2. Oxidative stress genes are late responders to general stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
- 3. Immune response genes respond to general stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
- Genes involved in calcium ion (Ca 2 + ) signaling respond to general stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
- 5. Most genes involved in central metabolism tend to be poor biomarkers of heat stress . . . . . . . . . . . . . . . . . . . . . . . . . . 70
- 6. Structural genes are possibly heat stress specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
- 7. Other candidate genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
- 8. Internal controls for GEB assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
- References Al-Horani, F.A., Al-Moghrabi, S.M., de Beer, D., 2003. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419-426.
- Alemu, I.J.B., Clement, Y., 2014. Mass Coral Bleaching in 2010 in the Southern Caribbean. PLoS ONE 9, e83829. http://dx.doi.org/10.1371/journal.pone.0083829.
- Aswani, S., Mumby, P.J., Baker, A.C., Christie, P., McCook, L.J., Steneck, R.S., Richmond, R.H., 2015. Scientific frontiers in the management of coral reefs. Front. Mar. Sci. 50. http:// dx.doi.org/10.3389/fmars.2015.00050.
- Baird, A.H., Bhagooli, R., Ralph, P.J., Takahashi, S., 2009. Coral bleaching: the role of the host. Trends Ecol. Evol. 24, 16-20.
- Baker, A.C., Cunning, R., 2016. Coral "bleaching" as a generalized stress response to environmental disturbance. In: Woodley, C.M., Downs, C.A., Bruckner, A.W., Porter, J.W., Galloway, S.B. (Eds.), Diseases of Coral, First edition John Wiley & Sons.
- Barshis, D.J., Ladner, J.T., Oliver, T.a., Seneca, F.O., Traylor-Knowles, N., Palumbi, S.R., 2013. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. U. S. A. 110, 1387-1392. http://dx.doi.org/10.1073/pnas.1210224110.
- Barshis, D.J., Ladner, J.T., Oliver, T.A., Palumbi, S.R., 2014. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol. Biol. Evol. 31, 1343-1352.
- Bay, R.B., Palumbi, S.R., 2014. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. http://dx.doi.org/10.1016/j.cub.2014.10.044.
- Bay, R.A., Palumbi, S.R., 2015. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602-1612. http://dx.doi.org/ 10.1093/gbe/evv085.
- Bellantuono, A.J., Granados-Cifuentes, C., Miller, D.J., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., 2012. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685. http://dx.doi.org/10.1371/journal.pone.0050685.
- Bhagooli, R., Sheppard, C.R.C., 2012. Prediction of recurrences of mass coral bleaching/ mortality and vulnerability of reef-building corals to climate change in Mauritian and Japanese waters. Univ. Mauritius Res J Special Issue: Sustain. Mar. Environ. 18A, 105-121.
- Birkeland, C., 1997. Symbiosis, fisheries and economic development on coral reefs. Trends Ecol. Evol. 12, 364-367.
- Brady, A.K., Snyder, K.A., Vize, P.D., 2011. Circadian cycles of gene expression in the coral, Acropora millepora. PLoS ONE 6. http://dx.doi.org/10.1371/journal.pone.0025072.
- Brown, B.E., 1997. Coral bleaching: causes and consequences. Coral Reefs http://dx.doi. org/10.1007/s003380050249.
- Bruno, J.F., Selig, E.R., 2007. Regional decline of coral cover in the Indo-Pacific: timing, ex- tent, and subregional comparisons. PLoS ONE 2 (8), e711. http://dx.doi.org/10.1371/ journal.pone.0000711.
- Cappello, F., Conway de Macario, E., Marasà, L., Zummo, G., Macario, A.J., 2008. Hsp60 ex- pression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 7, 801-809.
- Chambers, J., Angulo, A., Amaratunga, D., Guo, H., Jiang, Y., Wan, J.S., Bittner, A., Frueh, K., Jackson, M.R., Peterson, P.A., Erlander, M.G., Ghazal, P., 1999. DNA Microarrays of the complex human cytomegalovirus genome: Profiling kinetic class with drug sensitiv- ity of viral gene expression. J. Virol. 73, 5757-5766.
- Chen, T.-H., Cheng, Y.-M., Cheng, J.-O., Ko, F.-C., 2012. Assessing the effects of polychlorinated biphenyls (Aroclor 1254) on a scleractinian coral (Stylophora pistillata) at organism, physiological, and molecular levels. Ecotoxicol. Environ. Saf. 75, 207-212. http://dx.doi.org/10.1016/j.ecoenv.2011.09.001.
- Coles, S.L., Jokiel, P.L., 1977. Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar. Biol. 43 (209), 16.
- Cróquer, A., Weil, E., 2009. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Org. 87, 33-43. http://dx.doi.org/10.3354/dao02164.
- Császár, N.B.M., Ralph, P.J., Frankham, R., Berkelmans, R., van Oppen, M.J.H., 2010. Estimat- ing the potential for adaptation of corals to climate warming. PLoS ONE 5, e9751. http://dx.doi.org/10.1371/journal.pone.0009751.
- Desalvo, M.K., Voolstra, C.R., Sunagawa, S., Schwarz, J.A., Stillman, J.H., Coffroth, M.A., Szmant, A.M., Medina, M., 2008. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol. Ecol. 17, 3952-3971. http://dx.doi.org/10.1111/j.1365-294X.2008.03879.x.
- DeSalvo, M., Sunagawa, S., Voolstra, C., Medina, M., 2010a. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar. Ecol. Prog. Ser. 402, 97-113. http://dx.doi.org/10.3354/meps08372.
- DeSalvo, M.K., Sunagawa, S., Fisher, P.L., Voolstra, C.R., Iglesias-Prieto, R., Medina, M., 2010b. Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol. Ecol. 19, 1174-1186. http://dx.doi.org/10.1111/j.1365-294X.2010.04534.x.
- Dkhissi-Benyahya, O., Sicard, B., Cooper, H.M., 2000. Effects of irradiance and stimulus du- ration on early gene expression (Fos) in the suprachiasmatic nucleus: temporal sum- mation and reciprocity. J. Neurosci. 20, 7790-7797.
- Dove, S.G., Hoegh-Guldberg, O., Ranganathan, R., 2000. Major colour patterns of reef- building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197-204.
- Downs, C.A., Mueller, E., Phillips, S., Fauth, J.E., Woodley, C.M., 2000. A molecular biomark- er system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar. Biotechology 2, 533-544.
- Edge, S.E., Morgan, M.B., Snell, T.W., 2008. Temporal analysis of gene expression in a field population of the Scleractinian coral Montastraea faveolata. J. Exp. Mar. Biol. Ecol. 355, 114-124. http://dx.doi.org/10.1016/j.jembe.2007.12.004.
- Falkowski, P.G., Dubinsky, Z., 1981. Light-shade adaptation of Stylophora pistillata, a her- matypic coral from the Gulf of Eilat. Nature 289, 172-174.
- Furla, P., Galgani, I., Durand, I., Allemand, D., 2000. Sources and mechanisms of inorganic car- bon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445-3457.
- Granados-Cifuentes, C., Bellantuono, A.J., Ridgway, T., Hoegh-Guldberg, O., Rodriguez- Lanetty, M., 2013. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. BMC Genomics 14, 228. http://dx.doi.org/10.1186/1471-2164-14-228.
- Guo, R., Ebenezer, V., Ki, J.-S., 2012. Transcriptional responses of heat shock protein 70 (Hsp70) to thermal, bisphenol A, and copper stresses in the dinoflagellate Prorocentrum minimum. Chemosphere 89, 512-520. http://dx.doi.org/10.1016/j.chemosphere.2012\. 05.014.
- Hemond, E.M., Kaluziak, S.T., Vollmer, S.V., 2014. The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 15, 1133. http://dx.doi.org/10.1186/ 1471-2164-15-1133.
- Hill, A.A., Hunter, C.P., Tsung, B.T., Tucker-Kellogg, G., Brown, E.L., 2000. Genomic analysis of gene expression in C. elegans. Science 290, 809-812.
- Hoegh-Guldberg, O., 1999. Climate change: coral bleaching and the future of the world's coral reefs. Mar. Freshw. Res. 50, 839-866.
- Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias- Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A., Hatziolos, M.E., 2007. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737-1742.
- Huang, S.-P., Lin, K.-L., Fang, L.-S., 1998. The involvement of calcium in heat-induced coral bleaching. Zool. Stud. Taipei 37, 89-94.
- Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J.B.C., Kleypas, J., Lough, J.M., Marshall, P., Nyström, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B., Roughgarden, J., 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929-933.
- Jolly, C., Morimoto, R.I., 2000. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92, 1564-1572.
- Jones, R.J., Hoegh-Guldberg, O., Larkum, A.W.D., Schreiber, U., 1998. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zoo- xanthellae. Plant Cell Environ. 21, 1219-1230.
- Kenkel, C.D., Aglyamova, G., Alamaru, A., Bhagooli, R., Capper, R., Cunning, R., DeVillers, A., Haslun, J.A., Hédouin, L., Keshavmurthy, S., Kuehl, K.A., Mahmoud, H., McGinty, E.S., Montoya-Maya, P.H., Palmer, C.V., Pantile, R., Sánchez, J.A., Schils, T., Silverstein, R.N., Squiers, L.B., Tang, P.C., Goulet, T.L., Matz, M.V., 2011. Development of gene ex- pression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6. http://dx.doi.org/10.1371/journal.pone.0026914.
- Kenkel, C., Meyer, E., Matz, M., 2013. Gene expression under chronic heat stress in popu- lations of the mustard hill coral (Porites astreoides) from different thermal environ- ments. Mol. Ecol. 22, 4322-4334.
- Kenkel, C.D., Sheridan, C., Leal, M.C., Bhagooli, R., Castillo, K.D., Kurata, N., McGinty, E., Goulet, T.L., Matz, M.V., 2014. Diagnostic gene expression biomarkers of coral thermal stress. Mol. Ecol. Resour. 14, 667-678.
- Kvennefors, E.C.E., Leggat, W., Kerr, C.C., Ainsworth, T.D., Hoegh-Guldberg, O., Barnes, A.C., 2010. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev. Comp. Immunol. 34, 1219-1229. http://dx.doi.org/10\. 1016/j.dci.2010.06.016.
- Legewie, S., Dienst, D., Wilde, A., Herzel, H., Axmann, I.M., 2008. Small RNAs establish de- lays and temporal thresholds in gene expression. Biophys. J. 95, 3232-3238. http:// dx.doi.org/10.1529/biophysj.108.133819.
- Leggat, W., Seneca, F., Wasmund, K., Ukani, L., Yellowlees, D., Ainsworth, T.D., 2011. Differ- ential responses of the coral host and their algal symbiont to thermal stress. PloS ONE 6, e26687. http://dx.doi.org/10.1371/journal.pone.0026687.
- Lehner, B., Crombie, C., Tischler, J., Fortunato, A., Fraser, A.G., 2006. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat. Genet. 38, 896-903. http://dx.doi.org/10.1038/ng1844.
- Lesser, M.P., 2006. Oxidative stress in marine environments: biochemistry and physiolog- ical ecology. Annu. Rev. Physiol. 68, 253-278. http://dx.doi.org/10.1146/annurev. physiol.68.040104.110001.
- Lesser, M.P., Stochaj, W.R., Tapley, D.W., Shick, J.M., 1990. Bleaching in coral reef antho- zoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225.32.
- Levy, O., Kaniewska, P., Alon, S., Eisenberg, E., Karako-Lampert, S., Bay, L.K., Reef, R., Rodriguez-Lanetty, M., Miller, D.J., Hoegh-Guldberg, O., 2011. Complex diel cycles of gene expression in coral-algal symbiosis. Science (New York, N.Y.) 331, 175. http:// dx.doi.org/10.1126/science.1196419.
- Li, Z., Srivastava, P., 2004. Heat-shock proteins. Curr. Protoc. Immunol. http://dx.doi.org/ 10.1002/0471142735.ima01ts58 (Appendix 1: Appendix 1T).
- Marshall, A.T., Clode, P.L., Russell, R., Prince, K., Stern, R., 2007. Electron and ion micro- probe analysis of calcium distribution and transport in coral tissues. J. Exp. Biol. 210, 2453-2463. http://dx.doi.org/10.1242/jeb.003343.
- Matz, M.V., Wright, R.M., Scott, J.G., 2013. No control genes required: Bayesian analysis of qRT-PCR data. PLoS ONE 8 (8), e71448.
- McGinley, M.P., Aschaffenburg, M.D., Pettay, D.T., Smith, R.T., LaJeunesse, T.C., Warner, M.E., 2012. Transcriptional response of two core photosystem genes in Symbiodinium spp. exposed to thermal stress. PLoS ONE 7, e50439. http://dx.doi.org/10.1371/ journal.pone.0050439.
- Merle, P.L., Sabourault, C., Richier, S., Allemand, D., Furla, P., 2007. Catalase characteriza- tion and implication in bleaching of a symbiotic sea anemone. Free Radic. Biol. Med. 42, 236-246.
- Meyer, E., Aglyamova, G.V., Matz, M.V., 2011. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Sequencing procedure. Mol. Ecol. 1-18 http://dx.doi.org/10.1111/j.1365- 294X.2011.05205.x.
- Moya, A., Huisman, L., Forêt, S., Gattuso, J.-P., Hayward, D.C., Ball, E.E., Miller, D.J., 2015. Rapid acclimation of juvenile corals to CO 2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Mol. Ecol. 124, 438-452. http://dx.doi.org/ 10.1111/mec.13021.
- Muller, E.M., Rogers, C.S., Spitzack, A.S., van Woesik, R., 2008. Bleaching increases likeli- hood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191-195. http://dx.doi.org/10.1007/s00338-007-0310.
- Novelli, G., Ciccacci, C., Borgiani, P., Amati, M.P., Abadiec, E., 2008. Genetic tests and geno- mic biomarkers: regulation, qualification and validation. Clin. Cases Miner Bone Metab. 5 (2), 149-154.
- Oldenhuis, C.N.a.M., Oosting, S.F., Gietema, J.A., de Vries, E.G.E., 2008. Prognostic versus predictive value of biomarkers in oncology. Eur. J. Cancer 44, 946-953. http://dx. doi.org/10.1016/j.ejca.2008.03.006.
- Pagarigan, L., Takabayashi, M., 2008. Reference gene selection for qRT-PCR analysis of the Hawaiian coral Pocillopora meandrina subjected to elevated levels of temperature and nutrient. Proceedings the 11th International. Coral Reef Symposium, pp. 7-11.
- Parkinson, J.E., Banaszak, A.T., Altman, N.S., LaJeunesse, T.C., Baums, I.B., 2015. Intraspecific diversity among partners drives functional variation in coral symbioses. Sci. Rep. 5, 15667. http://dx.doi.org/10.1038/srep15667.
- Parkinson, J.E., Baumgarten, S., Michell, C.T., Baums, I.B., LaJeunesse, T.C., Voolstra, C.R., 2016. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol. Evol., evw019 http://dx.doi.org/10.1093/gbe/evw019.
- Pirkkala, L., Nykänen, P., Sistonen, L., 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Fed. Am. Soc. Exp. Biol. J. 15, 1118-1131.
- Richier, S., 2005. Symbiosis-induced adaptation to oxidative stress. J. Exp. Biol. 208, 277-285. http://dx.doi.org/10.1242/jeb.01368.
- Rocker, M.M., Willis, B.L., Bay, L.K., 2012. Thermal stress-related gene expression in corals with different Symbiodinium types. Proceedings the 12th International. Coral Reef Symposium, Cairns, Australia, pp. 1-5 9-13 July 2012.
- Rodriguez-Lanetty, M., Harii, S., Hoegh-Guldberg, O., 2009. Early molecular responses of coral larvae to hyperthermal stress: Coral Molecular responses to heat stress. Mol. Ecol. 18, 5101-5114. http://dx.doi.org/10.1111/j.1365-294X.2009.04419.x.
- Rogers, C.S., Muller, E., Spitzack, T., Miller, J., 2009. Extensive coral mortality in the US Vir- gin Islands in 2005/2006: A review of the evidence for synergy among thermal stress, coral bleaching and disease. Caribb. J. Sci. 45, 204-214.
- Rosic, N.N., Pernice, M., Dunn, S., Dove, S., Hoegh-Guldberg, O., 2010. Differential regula- tion by heat stress of novel cytochrome P450 Genes from the dinoflagellate symbionts of reef-building Corals. Appl. Environ. Microbiol. 76, 2823-2829. http://dx. doi.org/10.1128/AEM.02984-09.
- Rosic, N.N., Pernice, M., Dove, S., Dunn, S., Hoegh-Guldberg, O., 2011. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagel- lates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 16, 69-80. http://dx.doi.org/10.1007/s12192-010-0222-x.
- Rosic, N., Kaniewska, P., Chan, C.-K.K., Ling, E.Y., Edwards, D., Dove, S., Hoegh-Guldberg, O., 2014a. Early transcriptional changes in the reef-building coral Acropora aspera in re- sponse to thermal and nutrient stress. BMC Genomics 15, 1052.
- Rosic, N., Ling, E.Y.S., Chan, C.-K.K., Lee, H.C., Kaniewska, P., Edwards, D., Dove, S., Hoegh- Guldberg, O., 2014b. Unfolding the secrets of coral-algal symbiosis. ISME J. 9, 844-856. http://dx.doi.org/10.1038/ismej.2014.182.
- Rowan, R., 2004. Coral bleaching: Thermal adaptation in reef coral symbionts. Nature 430, 742. http://dx.doi.org/10.1038/430742a.
- Ruiz-Jones, L.J., Palumbi, S.R., 2015. Transcriptome-wide changes in coral gene expression at noon and midnight under field conditions. Biol. Bull. 228, 227-241.
- Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., Garrido, C., 2006. Intracellular and ex- tracellular functions of heat shock proteins: repercussions in cancer therapy. J. Leukoc. Biol. 81, 15-27. http://dx.doi.org/10.1189/jlb.0306167.
- Schwarz, J.A., Mitchelmore, C.L., Jones, R., O'Dea, A., Seymour, S., 2013. Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157, 272-279. http:// dx.doi.org/10.1016/j.cbpc.2012.12.003.
- Seneca, F.O., Palumbi, S.R., 2015. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467-1484. http://dx.doi.org/10.1111/mec.13125.
- Seneca, F.O., Forêt, S., Ball, E.E., Smith-Keune, C., Miller, D.J., Oppen, M.J.H., 2010. Patterns of gene expression in a scleractinian coral undergoing natural bleaching. Mar. Biotechnol. 12, 594-604. http://dx.doi.org/10.1007/s10126-009-9247-5.
- Seveso, D., Montano, S., Strona, G., Orlandi, I., Galli, P., Vai, M., 2014. The susceptibility of corals to thermal stress by analyzing Hsp60 expression. Mar. Environ. Res. 99, 69-75. http://dx.doi.org/10.1016/j.marenvres.2014.06.008.
- Sheppard, C.R., 2003. Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425, 294-297.
- Simon, R., 2011. Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol. Med. 3 (8), 429-435.
- Sorek, M., Yacobi, Y.Z., Roopin, M., Berman-Frank, I., Levy, O., 2013. Photosynthetic circa- dian rhythmicity patterns of Symbiodinium, the coral endosymbiotic algae. Proc. R. Soc. B Biol. Sci. 280, 20122942. http://dx.doi.org/10.1098/rspb.2012.2942.
- Sorek, M., Díaz-Almeyda, E.M., Medina, M., Levy, O., 2014. Circadian clocks in symbiotic corals: The duet between Symbiodinium algae and their coral host. Mar. Genomics 14, 47-57. http://dx.doi.org/10.1016/j.margen.2014.01.003.
- Souter, P., Bay, L.K., Andreakis, N., Császár, N., Seneca, F.O., van Oppen, M.J.H., 2011. A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral. Mol. Ecol. Resour. 11, 328-334. http://dx. doi.org/10.1111/j.1755-0998.2010.02923.x.
- Spalding, M., Ravilious, C., Green, E.P., 2001. World Atlas of Coral Reefs. University of Cal- ifornia Press.
- Stevens, F.C., 1983. Calmodulin: An introduction. Can. J. Biochem. Cell Biol. 61, 906-910.
- TerBush, D.R., Maurice, T., Roth, D., Novick, P., 1996. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483-6494.
- Traylor-Knowles, N., Palumbi, S.R., 2014. Translational environmental biology: cell biology informing conservation. Trends Cell Biol. 24, 265-267. http://dx.doi.org/10.1016/j.tcb. 2014.03.001.
- van Oppen, M.J.H., Oliver, J.K., Putnam, H.M., Gates, R.D., 2015. Building coral reef resil- ience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307-2313. http://dx. doi.org/10.1073/pnas.1422301112.
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 1-12.
- Veinger, L., Diamant, S., Buchner, J., Goloubinoff, P., 1998. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032-11037.
- Venn, A.A., Quinn, J., Jones, R., Bodnar, A., 2009. P-glycoprotein (multi-xenobiotic resis- tance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquat. Toxicol. 93, 188-195. http://dx.doi. org/10.1016/j.aquatox.2009.05.003.
- Vidal-Dupiol, J., Zoccola, D., Tambutté, E., Grunau, C., Cosseau, C., Smith, K.M., Freitag, M., Dheilly, N.M., Allemand, D., Tambutté, S., 2013. Genes related to ion-transport and en- ergy production are upregulated in response to CO 2 -driven pH decrease in corals: new insights from transcriptome analysis. PLoS ONE 8, e58652. http://dx.doi.org/10\. 1371/journal.pone.0058652.
- Voolstra, C.R., Schnetzer, J., Peshkin, L., Randall, C.J., Szmant, A.M., Medina, M., 2009. Ef- fects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics 10, 627. http://dx.doi.org/10.1186/1471-2164-10-627.
- Wagner, C.T., Lu, I.Y., Hoffman, M.H., Sun, W.Q., Trent, J.D., Connor, J., 2004. T-complex polypeptide-1 interacts with the erythrocyte cytoskeleton in response to elevated temperatures. J. Biol. Chem. 279, 16223-16228. http://dx.doi.org/10.1074/jbc.
- M310730200.
- Weis, V.M., 2008. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Expt Biol 211, 3059-3066.
- Wells, J.W., 1957. Corals. Geological Society of American Memoir 67, pp. 1087-1089.
- Wilkinson, C.R., Souter, D., Network, G.C.R.M., 2008. Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network.
- Woo, S., 2012. Transcriptomic signature in soft coral exposed to abiotic stresses. Proceed- ings of the 12th International. Coral Reef Symposium, Cairns, Australia 9-13 July 2012.
- Wright, R.M., Aglyamova, G.V., Meyer, E., Matz, M.V., 2015. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16. http://dx.doi.org/10.1186/s12864-015-1540-2.
- Yuyama, I., Ito, Y., Watanabe, T., Hidaka, M., Suzuki, Y., Nishida, M., 2012. Differential gene expression in juvenile polyps of the coral Acropora tenuis exposed to thermal and chemical stresses. J. Exp. Mar. Biol. Ecol. 430-431, 17-24. http://dx.doi.org/10.1016/ j.jembe.2012.06.020.