A note on the roles of quantum and mechanical models in social biophysics (original) (raw)

Abstract

Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals.

FAQs

sparkles

AI

What empirical findings support the quantum cognition approach to human decision-making anomalies?add

The research shows that quantum cognition models effectively account for irrationalities found in decision-making, specifically using quantum interference effects to unify previously disparate theoretical frameworks by Tversky and Kahneman.

How do quantum mechanical models illustrate cooperation in social dilemmas?add

Studies suggest that in quantum versions of the Prisoner's Dilemma, cooperative strategies arise as rational solutions, unlike the classical one-shot dilemmas where self-interest typically prevails.

What unique advantages do quantum approaches offer to social science research?add

Quantum theoretical models demonstrate theoretical cohesion across anomalies in social behavior, potentially providing insights into phenomena like altruism and cooperation that traditional models struggle to address.

How does the integration of neurobiological measurements enhance social neuroeconomics?add

This integration has led to significant discoveries, such as insula activation during inequity aversion and the role of oxytocin in fostering interpersonal trust, linking biological responses to social behavior.

What future directions are proposed for experimental quantum social biophysics?add

The authors advocate for employing quantum dots and mechanical experimental devices to model social interactions and examine conditions that optimize trust among agents in a society.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (31)

  1. Aerts, D., Czachor, M., 2004. Quantum aspects of semantic analysis and symbolic artificial intelligence. J. Phys. A 37, L123eL132.
  2. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I., 2012 Dec 7. Quantum-like model of diauxie in Escherichia coli: operational description of precultivation effect. J. Theor. Biol. 314, 130e137.
  3. Axelrod, R., Hamilton, W.D., 1981. Evol. Coop. Sci. 211 (1981), 1390e1396.
  4. Bohr, Niels, 1998. Causality and complementarity: supplementary papers. In: Faye, Jan, Folse, Henry J. (Eds.), The Philosophical Writings of Niels Bohr, vol. IV. Ox Bow Press.
  5. Bruza, P.D., Wang, Z., Busemeyer, J.R., 2015 Jul. Quantum cognition: a new theo- retical approach to psychology. Trends Cogn. Sci. 19 (7), 383e393.
  6. Busemeyer, J., Bruza, P., 2012. Quantum Models of Cognition and Decision. Cam- bridge University Press, Cambridge.
  7. Cheon, T., Takahashi, T., 2010. Interference and inequality in quantum decision theory. Phys. Lett. A 375, 100e104.
  8. Cheon, T., Takahashi, T., 2012. Quantum phenomenology of conjunction fallacy. J. Phys. Soc. Jpn. (in press).
  9. Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A., Zbilut, J.P., 2007. Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos, Solit. Fractals 31 (5), 1076e1088.
  10. de Barros, J.A., Suppes, P., 2009. Quantum mechanics, interference, and the brain. J. Math. Psychol. 53 (5), 306e313.
  11. Du, J.F., Li, H., Xu, X.D., Shi, M.J., Wu, J.H., Zhou, X.Y., 2002. Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88 (13), 137902.
  12. Eisert, J., Wilkens, M., Lewenstein, M., 1999. Quantum games and quantum strate- gies. Phys. Rev. Lett. 83, 3077.
  13. Fehr, E., Camerer, C.F., 2007 Oct. Social neuroeconomics: the neural circuitry of social preferences. Trends Cogn. Sci. 11 (10), 419e427.
  14. Hameroff, S., Penrose, R., 2014. Consciousness in the universe: a review of the 'Orch OR' theory. Phys. Life Rev. 11 (1), 39e78.
  15. Haven, E., Khrennikov, A., 2013. Quantum Social Science. Cambridge University Press.
  16. Kahneman, Daniel, 2011. Thinking, Fast and Slow. Farrar, Straus and Giroux. ISBN 978-1-4299-6935-2.
  17. Kahneman, Daniel, Tversky, Amos, 1979. Prospect theory: an analysis of decision under risk" (PDF). Econometrica 47 (2), 263.
  18. Khrennikov, A., 2010. Ubiquitous Quantum Structure: from Psychology to Finances. Springer.
  19. Kim, S.J., Naruse, M., Aono, M., Ohtsu, M., Hara, M., 2013. Decision maker based on nanoscale photo-excitation transfer. Sci. Rep. 3, 2370. http://dx.doi.org/10.1038/ srep02370.
  20. Marr, David, 1982. Vision: a Computational Investigation into the Human Repre- sentation and Processing of Visual Information. Freeman, New York.
  21. Mori, S., Hisakado, M., Takahashi, T., 2012. Phase transition to a two-peak phase in an information-cascade voting experiment. Phys. Rev. E Stat. Nonlin Soft Matter Phys. Aug 86 (2 Pt 2), 026109.
  22. Naruse, M., Berthel, M., Drezet, A., Huant, S., Aono, M., Hori, H., Kim, S.J., 2015 Aug 17. Single-photon decision maker. Sci. Rep. 5, 13253.
  23. Press, W.H., Dyson, F.J., 2012. Iterated Prisoners Dilemma contains strategies that dominate any evolutionary opponent. Proc. Natl. Acad. Sci. U. S. A. 109, 10409e10413.
  24. Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E., Cohen, J.D., 2003 Jun 13. The neural basis of economic decision-making in the Ultimatum Game. Science 300 (5626), 1755e1758.
  25. Savage, L.J., 1972. Foundations of Statistics, second ed.
  26. Takagishi, H., Fujii, T., Kameshima, S., Koizumi, M., Takahashi, T., 2009. Salivary alpha-amylase levels and rejection of unfair offers in the ultimatum game. Neuro Endocrinol. Lett. 30 (5), 643e646.
  27. Takahashi, T., Ikeda, K., Ishikawa, M., Kitamura, N., Tsukasaki, T., Nakama, D., Kameda, T., 2005 Feb 8. Interpersonal trust and social stress-induced cortisol elevation. Neuroreport 16 (2), 197e199.
  28. Tversky, A., Koehler, D., 1994. Support Theory: a nonextensional representation of subjective probability. Psychol. Rev. 101, 547e567.
  29. von Neumann, J., 1932. Mathematical Foundations of Quantum Mechanics. Beyer, R. T., trans. Princeton Univ. Press, 1996 edition.
  30. von Neumann, John von, Morgenstern, 1953. Oskar, Theory of Games and Economic Behavior. NJ. Princeton University Press, Princeton.
  31. Zak, P.J., Kurzban, R., Matzner, W.T., 2004 Dec. The neurobiology of trust. Ann. N. Y. Acad. Sci. 1032, 224e227.