Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert (original) (raw)
Related papers
Pharmacognosy Journal, 2018
Background: Stevia (Stevia rebaudiana) is a plant of nutritional and industrial importance for its diverse steviol glycosides. Stevioside, rebaudioside-A and their aglycon steviol – 200-300 times sweeter than normal sucrose are novel contenders for the development of antidiabetic drugs. Stevia leaf flavor at different harvest stages is a function of the metabolite content, which results from physiological changes during plant growth and development. Objectives: The main purpose of this study was to investigate metabolite changes during plant development using GC-MS metabolic profiling and HPTLC and to analyze expression of key genes of steviol glycoside biosynthetic pathway by qPCR. Material Methods: Metabolite data and gene expression from leaf samples of eight developmental stages underwent a variety of chemometric analyses, to identify the true differences between samples. Results: There was a significant increase of steviol from 0.23% to 6.6%, stevioside from 3.3% to 14.23%, rebaudioside-A from 0.826% to 4.99% and (+)-isomenthol showed decrease in concentration from 16.79% to 5.23% with plant growth. srUGTs, srKO, srKS, srKAH, srUGP1, and srDXR increased whereas expression of (+)-srLMS and srNMD decreased with plant progression. Metabolite and gene correlation analysis revealed the interdependencies of individual metabolites and metabolic pathways genes. Conclusion: These results will help in selecting and utilizing the appropriate traits in Stevia crop. Abbreviations used: SG: Steviol glycosides; PCA: Principal component analysis; VIP: Variable importance in the projection; UGT: Uracil glycosyltransferase.
The Plant journal : for cell and molecular biology, 2005
Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol and end with rebaudioside A. The steps involve the addition of glucose to the C-13 hydroxyl of steviol, the transfer of glucose to the C-2' and C-3' of the 13-O-glucose and the addition of glucose to the hydroxyl of the C-4 carboxyl group. We used our collection of ESTs, an UDP-glucosyltransferase (UGT)-specific electronic probe and key word searches to identify candidate genes resident in our collection. Fifty-four expressed sequence tags (ESTs) belonging to 17 clusters were found using this procedure. We isolated full length cDNAs for 12 of the UGTs, cloned them into an expression vector, and produced recombinant enzymes in Escherichia coli. An in vitro glucosyltransferase activi...
Cellular and Molecular Biology, 2018
Stevia rebaudiana Bertoni is One of the most important biologically sourced and low-calorie sweeteners that known as "Sweet Weed”. It contains steviol glycosides that they are about 200-300 times sweeter than sucrose. Tissue culture is the best method with high efficiency that can overcome to problems of traditional methods, and it is the most useful tools for studying stress tolerance mechanisms under in vitro conditions to obtain drought tolerance. In the present research, we investigated the impact of life cycle, leaves location and the harvesting time on expression of UGT74G1 and UGT76G1 as well as steviol glycosides accumulation. The highest gene expression of both UGT74G1 and UGT76G1 (207.677 and 208.396 Total Lab unit, respectively) was observed in young leaves in the second vegetative year. Also, the highest amount of stevioside accumulation (13.04) was due to the old leaves in vegetative stage which had significant differences with other effects whereas the lowest accu...
De novo transcriptome dataset of Stevia rebaudiana accession MS007
Data in Brief, 2019
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Plant Physiology and Biochemistry, 2015
a b s t r a c t miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana.
Acta Physiologiae Plantarum, 2013
This experiment was carried out to measure the transcript levels of some genes involved in biosynthesis of steviol glycosides. Stevia rebaudiana plants were treated with polyethylene glycol (PEG), paclobutrazol (PBZ) and gibberellic acid (GA). Using quantitative real-time polymerase chain reaction, the transcript levels of kaurene synthase (KS), kaurene oxidase (KO), kaurenoic acid hydroxylase (KAH) and three UDP-dependent glycosyltransferases, UGT85C2, UGT74G1 and UGT76G1, were studied. The transcription of ent-KS1-1, ent-KAH and UGT74G1 were fairly stable under different treatments. The transcription of ent-KO, UGT85C2 and UGT76G1 significantly decreased by PBZ and PEG treatments. The results indicate that both PBZ and PEG treatments resulted in the same negative effect on genes transcription, which could not be reversed by GA treatment.
Transcriptome profiling of Stevia rebaudiana MS007 revealed genes involved in flower development
TURKISH JOURNAL OF BIOLOGY, 2021
Stevia rebaudiana is a medicinal plant recommended to diabetic or obese patients as an alternative sweetener owing to its low-calorie property. Previous studies have found that the stevioside level is highest at the time of flower bud formation and lowest at the time of preceding and following flower bud formation. Hence, this study aims to identify the genes involved in the flowering of local S. rebaudiana accession MS007 by investigating the transcriptomic data of two stages of growth, before flowering (BF) and after flowering (AF) that were deposited under accession number SRX6362785 and SRX6362784 at the NCBI SRA database. The transcriptomic study managed to annotate 108299 unigenes of S. rebaudiana with 8871 and 9832 genes that were differentially expressed in BF and AF samples, respectively. These genes involved in various metabolic pathways related to flower development, response to stimulus as well as photosynthesis. Pheophorbide A oxygenase (PAO), eukaryotic translation initiation factor 3 subunit E (TIF3E1), and jasmonate ZIM domain-containing protein 1 (JAZ1) were found to be involved in the flower development. The outcome of this study will help further research in the manipulation of the flowering process, especially in the breeding programme to develop photo-insensitive Stevia plant.
Industrial Crops and Products, 2019
Stevia rebaudiana (Bertoni) is a perennial shrub native from Paraguay whose leaves accumulate steviol glycosides. Plants increase the production of phytochemicals as a response to stress factors to cope with possible damage. Elicitors are biological stress factors that can induce plant response to stress. Steviol glycosides are the phytochemicals responsible of the sweetener power of stevia (Stevia rebaudiana Bertoni cv. Morita II), which is up to 300-fold stronger than sucrose. Elicitors might affect Steviol glycosides content and gene expressionassociated to their biosynthesis. The aim of this research was to evaluate the effect of controlled elicitation using salicylic acid, chitosan and hydrogen peroxide on plant performance, steviol glycosides contents and gene expression-associated to steviol glycosides biosynthesis (SrKA13H, SrUGT85C2, SrUGT74G1 and SrUGT76G1) in stevia cultivated under greenhouse conditions. Weekly applications of elicitors were foliarly sprayed during four weeks, morphological measurements were made and samples were lyophilized and processed to evaluate SGs content. Gene expression-associated was analyzed by Ultra-Performance Liquid Chromatography coupled to a Quadrupole-Time of Flight. Results showed that all the evaluated elicitors (especially salicylic acid 0.1 mM) enhanced steviol glycosides content, which correlated with inducement of gene expression-associated to the biosynthesis of these compounds and increase in leaf number in stevia. Thus, controlled elicitation of stevia cultivation might be used to improve the yield of steviol glycosides for industrial purposes.
Scientific Reports, 2017
Buglossoides arvensis is an emerging oilseed crop that is rich in stearidonic acid (SDA) and has several potential applications in human health and nutrition. The molecular basis of SDA biosynthesis in this plant remains unknown due to lack of genomic information. To unravel key genes involved in SDA-rich triacylglycerol (TAG) biosynthesis, we performed transcriptome sequencing of pooled mRNA from five different developmental stages of B. arvensis seeds using Illumina NextSeq platform. De novo transcriptome assembly generated 102,888 clustered transcripts from 39.83 million high-quality reads. Of these, 62.1% and 55.54% of transcripts were functionally annotated using Uniprot-Viridiplantae and KOG databases, respectively. A total of 10,021 SSR-containing sequences were identified using the MISA tool. Deep mining of transcriptome assembly using in silico tools led to the identification of genes involved in fatty acid and TAG biosynthesis. Expression profiling of 17 key transcripts in...