ASMAA NABIL-ADAM (original) (raw)

Assessment of Secondary Metabolites from Marine-Derived Fungi as Antioxidant

Marine derived fungi are considered as a promising source of novel drugs due to their biodiversity and consequent chemo-diversity. Although marine microorganisms especially fungi are not well defined taxonomically, making this a promising frontier for the discovery of new medicines. This study focused on marine derived fungi as a model for bio-active exploration for new entities with anti-inflammatory and antioxidant capacity. Three in-vitro assays were used to investigate the bioactive antioxidant potentiality of fungal extracts. Thiobarbituric acid (TBARS), α,α-Diphenyl-ß-picrylhydrazyl (DPPH) and NO assay are based on their total phenolic and flavonoid content of each extract group. Ch. globosum recorded the highest antioxidant activity (92.82%) in TBARS assay, while G. dankaliensis came first by recording 59.28% in DPPH assay in comparison with ascorbic acid (61.83%). In NO inhibition assay, N. oryzae showed 49.3% comparing with ascorbic acid (73.12%). From the preliminary result of our extracts, we can consider the marine derived fungi extracts as promising antioxidant and anti-inflammatory drug candidate.

Production of Secondary Metabolites as Antioxidants from Marine-Derived Fungi and Bacteria

Forty and fifty three different isolates of marine fungi and bacteria, respectively were isolated from Egyptian environment. All fungal isolates showed antioxidant activities, isolate No. 37F,Circinella muscae (Sorokine) Berlese & De Toni showed strongest antioxidant activity (95.46℅).Only 8 isolates from marine bacteria isolates showed antioxidant activity, isolate No. 20B Bacillus brevis showed strongest antioxidant activity (30.25℅). The obtained results showed that marine fungal extracts have higher antioxidant activities comparing with marine bacterial extracts, indicating that marine fungal extracts can be considered as promising tool in antioxidant drug industries.

Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives

Antioxidants

The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerati...

Potential of Anti-Cancer Activity of Secondary Metabolic Products from Marine Fungi

Journal of Fungi, 2021

The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillus niger, A. fumi...