Poisson-type processes governed by fractional and higher-order recursive differential equations (original) (raw)
Related papers
A fractional generalization of the Poisson processes
2007
We have provided a fractional generalization of the Poisson renewal processes by replacing the first time derivative in the relaxation equation of the survival probability by a fractional derivative of order α (0 < α ≤ 1). A generalized Laplacian model associated with the Mittag-Leffler distribution is examined. We also discuss some properties of this new model and its relevance to time series. Distribution of gliding sums, regression behaviors and sample path properties are studied. Finally we introduce the q-Mittag-Leffler process associated with the q-Mittag-Leffler distribution.
Alternative Forms of Compound Fractional Poisson Processes
Abstract and Applied Analysis, 2012
We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012), we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators). These subordinating relationships hold, not only in the limit, but also in the finite domain. In som...
Full characterization of the fractional Poisson process
EPL (Europhysics Letters), 2011
The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and independent increments. It is not a Lévy process and it is not a Markov process. In this letter, we present formulae for its finite-dimensional distribution functions, fully characterizing the process. These exact analytical results are compared to Monte Carlo simulations.
Renewal processes linked to fractional relaxation equations with variable order
arXiv (Cornell University), 2023
We introduce and study here a renewal process defined by means of a time-fractional relaxation equation with derivative order α(t) varying with time t ≥ 0. In particular, we use the operator introduced by Scarpi in the Seventies (see [23]) and later reformulated in the regularized Caputo sense in [4], inside the framework of the so-called general fractional calculus. The model obtained extends the well-known time-fractional Poisson process of fixed order α ∈ (0, 1) and tries to overcome its limitation consisting in the constancy of the derivative order (and therefore of the memory degree of the interarrival times) with respect to time. The variable order renewal process is proved to fall outside the usual subordinated representation, since it can not be simply defined as a Poisson process with random time (as happens in the standard fractional case). Finally a related continuous-time random walk model is analysed and its limiting behavior established.
Convoluted Fractional Poisson Process
Latin American Journal of Probability and Mathematical Statistics
In this paper, we introduce and study a convoluted version of the time fractional Poisson process by taking the discrete convolution with respect to space variable in the system of fractional differential equations that governs its state probabilities. We call the introduced process as the convoluted fractional Poisson process (CFPP). The explicit expression for the Laplace transform of its state probabilities are obtained whose inversion yields its one-dimensional distribution. Some of its statistical properties such as probability generating function, moment generating function, moments etc. are obtained. A special case of CFPP, namely, the convoluted Poisson process (CPP) is studied and its time-changed subordination relationships with CFPP are discussed. It is shown that the CPP is a Lévy process using which the long-range dependence property of CFPP is established. Moreover, we show that the increments of CFPP exhibits short-range dependence property.
On the Fractional Poisson Process and the Discretized Stable Subordinator
Axioms, 2015
We consider the renewal counting number process N = N (t) as a forward march over the non-negative integers with independent identically distributed waiting times. We embed the values of the counting numbers N in a "pseudo-spatial" non-negative half-line x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both variables x and t. Applying then a modification of the Montroll-Weiss-Cox formalism of continuous time random walk we obtain the essential characteristics of a renewal process in the transform domain and, if we are lucky, also in the physical domain. The process t = t(N ) of accumulation of waiting times is inverse to the counting number process, in honour of the Danish mathematician and telecommunication engineer A.K. Erlang we call it the Erlang process. It yields the probability of exactly n renewal events in the interval (0, t]. We apply our Laplace-Laplace formalism to the fractional Poisson process whose waiting times are of Mittag-Leffler type and to a renewal process whose waiting tmes are of Wright type. The process of Mittag-Leffler type includes as a limiting case the classical Poisson process, the process of Wright type represents the discretized stable subordinator and a re-scaled version of it was used in our method of parametric subordination of time-space fractional diffusion processes. Properly rescaling the counting number process N (t) and the Erlang process t(N ) yields as diffusion limits the inverse stable and the stable subordinator, respectively.
Laplace-Laplace analysis of the fractional Poisson process
We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities.
Statistics & Probability Letters, 2014
Fractional Poisson processes, a rapidly growing area of non-Markovian stochastic processes, are useful in statistics to describe data from counting processes when waiting times are not exponentially distributed. We show that the fractional Kolmogorov-Feller equations for the probabilities at time t can be representated by an infinite linear system of ordinary differential equations of first order in a transformed time variable. These new equations resemble a linear version of the discrete coagulation-fragmentation equations, wellknown from the non-equilibrium theory of gelation, cluster-dynamics and phase transitions in physics and chemistry.
On a fractional jump process with two kinds of jumps and its connection with the Poisson process
2015
We consider a fractional counting process with jumps of amplitude 1, 2,. .. , k, with k ∈ N, whose probabilities satisfy a suitable system of fractional difference-differential equations. We obtain the moment generating function and the probability law of the resulting process in terms of generalized Mittag-Leffler functions. We also discuss two equivalent representations both in terms of a compound fractional Poisson process and of a subordinator governed by a suitable fractional Cauchy problem. The first occurrence time of a jump of fixed amplitude is proved to have the same distribution as the waiting time of the first event of a classical fractional Poisson process, this extending a well-known property of the Poisson process. When k = 2 we also express the distribution of the first passage time of the fractional counting process in an integral form. Finally, we show that the ratios given by the powers of the fractional Poisson process and of the counting process over their means tend to 1 in probability.
Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator
Stochastic Analysis and Applications
The space-fractional and the time-fractional Poisson processes are two well-known models of fractional evolution. They can be constructed as standard Poisson processes with the time variable replaced by a stable subordinator and its inverse, respectively. The aim of this paper is to study non-homogeneous versions of such models, which can be defined by means of the so-called multistable subordinator (a jump process with non-stationary increments), denoted by H := H(t), t ≥ 0. Firstly, we consider the Poisson process time-changed by H and we obtain its explicit distribution and governing equation. Then, by using the right-continuous inverse of H, we define an inhomogeneous analogue of the time-fractional Poisson process.