Fatty acids, antioxidants and physical activity in brain aging (original) (raw)
Related papers
Dietary fatty acids and the aging brain
Nutrition Reviews, 2010
Aging contributes to physiological decline and vulnerability to disease. In the brain, even with minimal neuronal loss, aging increases oxidative damage, inflammation, demyelination, impaired processing, and metabolic deficits, particularly during pathological brain aging. In this review, the possible role of docosahexaenoic acid (DHA) in the prevention of age-related disruption of brain function is discussed. High-fat diabetogenic diets, cholesterol, and the omega-6 fatty acid arachidonate and its prostaglandin metabolites have all been implicated in promoting the pathogenesis of Alzheimer's disease. Evidence presented here shows DHA acts to oppose this, exerting a plethora of pleiotropic activities to protect against the pathogenesis of Alzheimer's disease.
International Journal of Molecular Sciences
As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PU...
Hippokratia
Background: The omega 3 fatty acids play an important role in many physiological processes. Their effect is well documented in neurodegenerative diseases and inflammatory diseases. Also, aging as a biophysiological process could be influenced by eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) components of fish oil. However there are not many studies showing the effect of PUFA (polyunsaturated FA) suplementation in eldery brain functions and the response to oxidative strees. The aim of this study was to investigate the effects of dietary omega-3 fatty acid supplementation on levels of lipid peroxidation and oxidant/antioxidant status of brain tissue in aged (24 months old) Wistar rats. Methods: Animals were divided in two groups. Control group (n=8) was fed with standard laboratory food and received water ad libitum. Treated group (n=8) was also fed with standard laboratory food, water ad libitum and received fish oil capsules (EPA+DHA) for 6 weeks. Daily dose was 30mg EPA ...
N-3 Polyunsaturated Fatty Acids Supplementation Enhances Hippocampal Functionality in Aged Mice
Frontiers in Aging Neuroscience, 2014
As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.
Prostaglandins, leukotrienes, and essential fatty acids, 2015
The present study investigated the effects of orally administered long chain omega-3 polyunsaturated fatty acids (PUFA) on mitochondrial function and processing of the amyloid precursor protein (APP) in brains of young (3 months old) and aged (24 months old) NMRI-mice. Neuroprotective properties of fish oil (FO) (1.6 ml/kg p.o.) were assessed ex vivo after 21 days in dissociated brain cells (DBC) and isolated mitochondria. Docosahexaenoic acid (DHA) levels were significantly lower in blood and brains of aged mice which were compensated by FO administration. Isolated DBC and mitochondria from aged mice showed significantly lower adenosine triphosphate (ATP) levels and reduced activity of complexes I+II and IV of the mitochondrial respiration system, respectively. FO restored the age-related decrease in respiration and improved ATP production. Moreover, FO increased the levels of anti-apoptotic Bcl-2 protein. Cell membrane fractions isolated from the brain of aged mice exhibited lower...
The role of polyunsaturated fatty acids in restoring the aging neuronal membrane
Neurobiology of Aging, 2002
In addition to a gradual loss of neurons in various brain regions, major biochemical changes in the brain affect the neuronal membrane that is the "site of action" for many essential functions including long-term potentiation (LTP), learning and memory, sleep, pain threshold, and thermoregulation. Normal physiological functioning includes the transmission of axonal information, regulation of membrane-bound enzymes, control of ionic channels and various receptors. All are highly dependent on membrane fluidity, where rigidity is increased during aging. The significantly higher level of cholesterol in aging neuronal membrane, the slow rate of cholesterol turnover, and the decreased level of total polyunsaturated fatty acids (PUFA) may result from poor passage rate via the blood-brain barrier, or from a decreased rate of incorporation into the membrane, or a decrease in the activities of delta-6 and delta-9 desaturase enzymes. The added oxidative stress, which leads to an increase of free radicals leading to a decrease in membrane fluidity, may respond to a restricted diet, and thereby overcome the damaging effects of the free radicals. A central focus of this review is that a specific ratio of n-3/n-6 PUFA can restore many of these age-related effects.
Alzheimer's Research & Therapy
Background In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary suppl...
Journal of Neuroscience Research, 2010
Retinoic acid receptors (RARs), retinoid X receptors (RXRs), and peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in many cellular processes, such as learning and memory. RAR and RXR mRNA levels decrease with ageing, and the decreases can be reversed by retinoic acid treatment, which also alleviates age-related memory deficits. The omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have neuroprotective effects in the aged brain and are endogenous ligands of RXR and PPAR. We investigated whether dietary EPA and DHA supplementation reverses age-related declines in protein levels of these receptors in rat forebrain. Two studies were conducted comparing adult and old rats. In the first, old rats were fed standard or EPA/DHA-enriched (270 mg/kg/day, EPA to DHA ratio 1.5:1) diets for 12 weeks. Analysis by Western blot revealed significant decreases in RARa, RXRa, RXRb, and PPARg in the forebrain with ageing, which were reversed by supplementation. Immunohistochemical analysis of the hippocampus showed significant agerelated decreases in RARa and RXRb expression in CA1 and the dentate gyrus, which were restored by supplementation. Decreases in hippocampal doublecortin expression were also partially alleviated, suggesting a positive effect on neurogenesis. We also investigated the effects of DHA supplementation (300 mg/kg/day for 12 weeks) on RARa, RXRa, and RXRb expression in the prefrontal cortex, striatum, and hippocampus. Overall, DHA supplementation appeared to increase receptor expression compared with the untreated old group. These observations illustrate additional mechanisms that might underlie the neuroprotective effects of omega-3 fatty acids in ageing. V V C 2010 Wiley-Liss, Inc.
Antioxidative defense mechanisms in the aging brain
Archives of Biological Sciences, 2014
Aging is an extremely complex, multifactorial process that is characterized by a gradual and continuous loss of physiological functions and responses, particularly marked in the brain. A common hallmark in aging and age-related diseases is an increase in oxidative stress and the failure of antioxidant defense systems. Current knowledge indicates that the level of glutathione progressively declines during aging. Because nerve cells are the longest-living cells that exhibit a high consumption rate of oxygen throughout an individual?s lifetime, the brain may be especially vulnerable to oxidative damage and this vulnerability increases during aging. In addition, the brain contains high concentrations of polyunsaturated fatty acids and transition metals and low antioxidative defense mechanisms. Although aging is an inevitable event, a growing volume of data confirms that antioxidant supplementation in combination with symptomatic drug treatments reduces oxidative stress and improves cogn...