Repair bond strengths of non-aged and aged resin nanoceramics (original) (raw)
PURPOSE. To explore the influence of different surface conditionings on surface changes and the influence of surface treatments and aging on the bond strengths of composites to non-aged and aged resin nanoceramics. MATERIALS AND METHODS. Rectangular-shaped non-aged and aged (5000 thermocycles) resin nanoceramic specimens (Lava Ultimate) (n = 63, each) were divided into 3 groups according to surface treatments (untreated, air abrasion, or silica coating) (n = 21). The surface roughness was measured and scanning electron microscopy was used to examine one specimen from each group. Afterwards, the specimens were repaired with a composite resin (Filtek Z550) and half were sent for aging (5000 thermocycles, n = 10, each). Shear bond strengths and failure types were evaluated. Roughness and bond strength were investigated by two-and three-way analysis of variance, respectively. The correlation between the roughness and bond strength was investigated by Pearson's correlation test. RESULTS. Surface-treated samples had higher roughness compared with the untreated specimens (P=.000). For the non-aged resin nanoceramic groups, aging was a significant factor for bond strength; for the aged resin nanoceramic groups, surface treatment and aging were significant factors. The failures were mostly adhesive after thermal cycling, except in the non-aged untreated group and the aged air-abraded group, which had mostly mixed failures. Roughness and bond strength were positively correlated (P=.003). CONCLUSION. Surface treatment is not required for the repair of non-aged resin nanoceramic; for the repair of aged resin nanoceramic restorations, air abrasion is recommended. [ J Adv Prosthodont 2017;]
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact