Solid Particle Deposition During Turbulent Flow Production Operations (original) (raw)

The production and transportation of petroleum fluids could be severely affected by deposition of suspended particles (i.e. asphaltene, paraffin/wax, sand, and/or diamondoid) in the production wells and/or transfer pipelines. In many instances the amount of precipitation is rather large causing complete plugging of these conduits. Therefore, it is important to understand the behavior of suspended particles during flow conditions. In this paper we present an analysis of the diffusional effects on the rate of solid particle deposition during turbulent flow conditions (crude oil production generally falls within this regime). The turbulent boundary layer theory and the concepts of mass transfer have been utilized to calculate the particle deposition rates on the walls of the flowing conduit. The developed model accounts for the eddy and Brownian diffusivities as well as for inertial effects. The analysis presented in this paper shows that rates of solid particle deposition (during crude oil production) on the walls of the flowing channel due solely to diffusional effects are small. It is also shown that deposition rates decrease with increasing particle size. However, when the process is momentum controlled (large particle sizes) higher deposition rates are expected.