Thermally sensitive polypeptide-based copolymer for DNA-Journal of Nanoparticle Research -Suppl- 2013 (original) (raw)
Related papers
Poly-L-Lysine-Graft-Peg Comb-Type Polycation Copolymers for Gene Delivery
Journal of Macromolecular Science, Part A- Pure and Applied Chemistry, 1999
Polycations have been used for gene delivery in vitro quite successfully, however, in vivo applications suffered from serum effects that lower the overall gene drug efficiency. PEG polymers have been used extensively to minimize serum effects and create "stealth liposomes", biocompatible materials, and proteins with extended circulation. Here, we report our efforts towards creating "stealth polyplexes". A comb-type polycation, poly-Llysine-graft-PEG copolymers were successfully prepared by ring opening of PEG-epoxide with e-amino lysine groups of linear poly-L-Iysine. The ratios of PEG-epoxide to poly-L-Iysine, PEG-epoxide size (2K, 3K, and 5K), and poly-L-Iysine size (10K, 26K, and 38K) were varied. Copolymers with as little as 2% grafted PEG chains sterically stabilized DNA/copolymer complexes (polyplexes) even at charge neutrality. These polyplexes, formed with copolymers with various size of PEG chains grafted on various lenghths ofpoly-L-lysine backbone, remained
Polyethylenimine-grafted copolymer of poly( l-lysine) and poly(ethylene glycol) for gene delivery
Biomaterials, 2011
A major challenge in gene therapy is the development of effective gene delivery vectors with low toxicity. In the present study, linear poly(ethylenimine) (lPEI) with low molecular weight was grafted onto the block copolymer (PPL) of poly(L-lysine) (PLL) and poly(ethylene glycol)(PEG), yielding a ternary copolymer PEG-b-PLL-g-lPEI (PPI) for gene delivery. In such molecular design, PLL, lPEI and PEG blocks were expected to render the vector biodegradability, proton buffering capacity, low cationic toxicity and potentially long circulation in vivo, respectively. Given proper control of molecular composition, the copolymers demonstrated lower cytotoxicity, proton buffering capacity, ability to condense pDNA and mediate effective gene transfection in various cell lines. With folate as an exemplary targeting ligand, the FA-PPI/pDNA complex showed much higher transgene activity than its nontargeting counterpart for both reporter and therapeutic genes in folate receptor(FR)-positive cells. FA-PPI mediated effective transfection of the TNF-related apoptosis-inducing ligand gene (TRAIL) in human hepatoma Bel 7402 cells, leading to cell apoptosis and great suppression of cell viability. Our results indicate that the copolymers might be a promising vector combining low cytotoxicity, biodegradability, and high gene transfection efficiency.
PEGylated Amine-Functionalized Poly(ε-caprolactone) for the Delivery of Plasmid DNA
Materials, 2020
As a promising strategy for the treatment of various diseases, gene therapy has attracted increasing attention over the past decade. Among various gene delivery approaches, non-viral vectors made of synthetic biomaterials have shown significant potential. Due to their synthetic nature, non-viral vectors can have tunable structures and properties by using various building units. In particular, they can offer advantages over viral vectors with respect to biosafety and cytotoxicity. In this study, a well-defined poly(ethylene glycol)-block-poly(α-(propylthio-N,N-diethylethanamine hydrochloride)-ε-caprolactone) diblock polymer (PEG-b-CPCL) with one poly(ethylene glycol) (PEG) block and one tertiary amine-functionalized cationic poly(ε-caprolactone) (CPCL) block, as a novel non-viral vector in the delivery of plasmid DNA (pDNA), was synthesized and studied. Despite having a degradable polymeric structure, the polymer showed remarkable hydrolytic stability over multiple weeks. The optimal...
Temperature-responsive cationic block copolymers as nanocarriers for gene delivery
International Journal of Pharmaceutics, 2013
Cationic block copolymers have been regarded as promising alternatives to the use of viral vectors for gene delivery. In this work, poly(N-isopropylacrylamide) n -block-poly((3acrylamidopropyl)trimethylammonium chloride) m (PNIPAAM n -b-PAMPTMA(+) m ) block copolymers with n = 48 or 65 and m = 6, 10 or 20 were synthesized and evaluated in terms of their potential for in vitro transfection of HeLa cells. These block copolymers collapse above a phase transition temperature, allowing the entrapment of the DNA molecules they are adsorbed to. The transfection efficiency increased with polymer concentration and was higher in the presence of a long PNIPAAM block and for a short charged block. In general, increasing the length of the charged block decreased the transfection efficiency. Additionally, polymer-DNA complexes (polyplexes) formed at lower polymer/DNA charge ratios caused lower cell toxicity levels. All polymers were shown to efficiently protect the DNA, even when they were present at low concentrations. At 37 • C, the polyplexes mostly formed structures with size ranging from 100 to 500 nm. The results also showed that the thermoresponsive contraction of PNIPAAM causes the charged block segments to be pressed out to the surface. The formation of compact structures seems to be a key factor in achieving high transfection efficiency.
Biomaterials, 2011
Successful gene delivery systems deliver DNA in a controlled manner combined with minimal toxicity and high transfection efficiency. Here we investigated 15 different copolymers of poly(L-lysine)-graftpoly(2-methyl-2-oxazoline) (PLL-g-PMOXA) of variable grafting densities and PMOXA molecular weights for their potential to complex and deliver plasmid DNA. PLL 20 g 7 PMOXA 4 formed at N/P charge ratio of 3.125 was found to transfect 9 AE 1.6% of COS-7 cells without impairment of cell viability. Furthermore these PLL-g-PMOXA-DNA condensates were internalized 2 h after transfection and localized in the perinuclear region after 6 h. The condensates displayed a hydrodynamic diameter of w100 nm and were found to be stable in serum and after 70 C heat treatment, moreover the condensates protected DNA against DNase-I digestion. The findings suggest that DNA-PMOXA-g-PLL condensate formation for efficient DNA-delivery strongly depends on PMOXA grafting density and molecular weight showing an optimum at low grafting density between 7 and 14% and medium N/P charge ratio (3.125e6.25). Thus, PLL 20 g 7 PMOXA 4 copolymers might be promising as alternative to PLL-g-PEG-DNA condensates for delivery of therapeutic DNA.
Journal of Biomaterials Science, Polymer Edition, 2001
Cationic block copolymers, consisting of a poly(ethylene glycol) block and a block deriving from the poly(dimethylamino)ethyl methacrylate were prepared via a two-step procedure, based on the use of macroinitiators. By appropriately changing the experimental conditions and reacting the poly(dimethylamino)ethyl methacrylate block with iodo-or bromo-alkyl derivatives, a variety of ionic block copolymers with tuned physicochemical properties were prepared. These block copolymers are able to spontaneously self-assemble with plasmid DNA to produce oriented and shielded vectors, with physicochemical properties appropriate for in vivo applications. In addition, the formation of a complex between the cationic block copolymer and the plasmid DNA results in a nuclease resistance increase due to the stable nature of the complex.
Characterization of PLL-g-PEG-DNA Nanoparticles for the Delivery of Therapeutic DNA
Bioconjugate Chemistry, 2008
Local and controlled DNA release is a critical issue in current gene therapy. As viral gene delivery systems are associated with severe security problems, nonviral gene delivery vehicles were developed. Here, DNA-nanoparticles using grafted copolymers of PLL and PEG to increase their biocompatibility and stealth properties were systematically studied. Ten different PLL-based polymers with no, low, and high PEG grafting and PEG molecular weights as well as different PLL backbone lengths were complexed with plasmids containing 3200 to 10,100 base pairs. Stable complexes were formed and selected for cytotoxicity and transfection efficiency. Predominantly, PLL-g-PEG-DNA nanoparticles grafted with 4 or 5% PEG moieties of 5 kDa transfected 40% COS-7 cells without reduction of cell viability when formed at N/P ratios between 0.1 and 12.5. The molecular weight of PLL did not significantly affect transfection efficiency or cytotoxicity indicating that a specific cationic charge-density-to-PEG-ratio is important for efficient transfection and low cytotoxicity. The PLL-g-PEG-DNA nanoparticles were spherical with a diameter of ∼100 nm and did not aggregate over 2 weeks. Moreover, they protected included plasmid DNA against serum components and DNase I digestion. Therefore, such storage stable and versatile PLL-g-PEG-DNA nanoparticles might be useful to deliver differently sized therapeutic DNA for in ViVo applications.
Biomacromolecules, 2008
One-component homopolymers of cationic monomers (polycations) and diblock copolymers comprising poly(ethylene glycol) (PEG) and a polycation block have been the most widely used types of polymers for formulation of polymer-based gene delivery systems. In this study, we incorporate a hydrophobic middle block into the conventional PEG-polycation architecture, and investigate the effects of this hydrophobic modification on the physicochemical and cell-level biological properties of the polymer-DNA complexes that are relevant to gene delivery applications. The ABC-type triblock copolymer used in this study consists of (A) PEG, (B) hydrophobic poly(n-butyl acrylate) (PnBA) and (C) cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) component polymers. The properties of the triblock copolymer/DNA complexes are compared with those of two other, more conventional DNA carriers derived, respectively, using a PDMAEMA homopolymer and a PEG-PDMAEMA diblock copolymer having comparable molecular weights for individual blocks. The PEG-PnBA-PDMAEMA polymer forms, in aqueous solution, positively-charged spherical micelles. The electrostatic complexation of these micelles with plasmid DNA molecules results in the formation of stable small-size DNA particles coated with a micelle monolayer, as confirmed by agarose gel electrophoresis, dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM). Proton nuclear magnetic resonance (1 H NMR) spectroscopy measurements indicate that the whole micelle-DNA assembly (named for convenience as "micelleplex") is shielded predominantly by the PEG chains. DLS and optical microscopy imaging measurements indicate that in comparison with PDMAEMA/DNA polyplexes, the micelleplexes have a significantly lower tendency to aggregate under physiological salt concentrations, and show reduced interactions with negatively-charged components in serum such as albumin and erythrocytes. While the micelleplexes are comparable with the PEG-PDMAEMA-based DNA polyplexes in terms of their stability against aggregation under high salt concentrations and in the presence of the albumin protein, they have a slightly higher tendency to interact with erythrocytes than the diblock copolymer polyplexes. Agarose gel electrophoresis measurements indicate that relative to the PEG-PDMAEMA polyplexes, the micelleplexes provide better protection of the encapsulated DNA from enzymatic degradation, and also exhibit greater stability against disintegration induced by polyanionic additives; in these respects, the PDMAEMA homopolymer-based polyplexes show the best performance. In vitro studies in HeLa cells indicate that the PDMAEMA polyplexes show the highest gene transfection efficiency among the three different gene delivery systems. Between the micelleplexes and PEG-PDMAEMA polyplexes, a higher gene transfection efficiency is