Lp-PLA2 and risk of atherosclerotic vascular disease (original) (raw)

Multilocus genetic determinants of LDL particle size in coronary artery disease families

The American Journal of Human Genetics, 1996

Recent interest in atherosclerosis has focused on the genetic determinants of low-density lipoprotein (LDL) particle size, because of (i) the association of small dense LDL particles with a three-fold increased risk for coronary artery disease (CAD) and (ii) the recent report of linkage of the trait to the LDL receptor (chromosome 19). By utilizing nonparametric quantitative sib-pair and relative-pair analysis methods in CAD families, we tested for linkage of a gene or genes controlling LDL particle sizes with the genetic loci for the major apolipoproteins and enzymes participating in lipoprotein metabolism. We confirmed evidence for linkage to the LDL receptor locus (P=.008). For six candidate gene loci, including apolipoprotein(apo)B, apoAII, apo(a), apoE-CI-CII, lipoprotein lipase, and high-density lipoprotein-binding protein, no evidence for linkage was observed by sib-pair linkage analyses (P values ranged from .24 to .81). However, in addition, we did find tentative evidence for linkage with the apoAI-CIII-AIV locus (chromosome 11) (P=.06) and significant evidence for linkage of the cholesteryl ester transfer protein locus (chromosome 16) (P=.01) and the manganese superoxide dismutase locus (chromosome 6) (P=.001), thus indicating multilocus determination of this atherogenic trait.

LDL-cholesterol concentrations: a genome-wide association study

The Lancet, 2008

Background-LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations.

Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis

JAMA cardiology, 2018

Human genetic studies have indicated that plasma lipoprotein(a) (Lp[a]) is causally associated with the risk of coronary heart disease (CHD), but randomized trials of several therapies that reduce Lp(a) levels by 25% to 35% have not provided any evidence that lowering Lp(a) level reduces CHD risk. To estimate the magnitude of the change in plasma Lp(a) levels needed to have the same evidence of an association with CHD risk as a 38.67-mg/dL (ie, 1-mmol/L) change in low-density lipoprotein cholesterol (LDL-C) level, a change that has been shown to produce a clinically meaningful reduction in the risk of CHD. A mendelian randomization analysis was conducted using individual participant data from 5 studies and with external validation using summarized data from 48 studies. Population-based prospective cohort and case-control studies featured 20 793 individuals with CHD and 27 540 controls with individual participant data, whereas summarized data included 62 240 patients with CHD and 127...

Association of Triglyceride-Lowering LPL Variants and LDL-C–Lowering LDLR Variants With Risk of Coronary Heart Disease

JAMA, 2019

IMPORTANCE Triglycerides and cholesterol are both carried in plasma by apolipoprotein B (ApoB)-containing lipoprotein particles. It is unknown whether lowering plasma triglyceride levels reduces the risk of cardiovascular events to the same extent as lowering low-density lipoprotein cholesterol (LDL-C) levels. OBJECTIVE To compare the association of triglyceride-lowering variants in the lipoprotein lipase (LPL) gene and LDL-C-lowering variants in the LDL receptor gene (LDLR) with the risk of cardiovascular disease per unit change in ApoB. DESIGN, SETTING, AND PARTICIPANTS Mendelian randomization analyses evaluating the associations of genetic scores composed of triglyceride-lowering variants in the LPL gene and LDL-C-lowering variants in the LDLR gene, respectively, with the risk of cardiovascular events among participants enrolled in 63 cohort or case-control studies conducted in North America or Europe between 1948 and 2017. EXPOSURES Differences in plasma triglyceride, LDL-C, and ApoB levels associated with the LPL and LDLR genetic scores. MAIN OUTCOMES AND MEASURES Odds ratio (OR) for coronary heart disease (CHD)-defined as coronary death, myocardial infarction, or coronary revascularization-per 10-mg/dL lower concentration of ApoB-containing lipoproteins. RESULTS A total of 654 783 participants, including 91 129 cases of CHD, were included (mean age, 62.7 years; 51.4% women). For each 10-mg/dL lower level of ApoB-containing lipoproteins, the LPL score was associated with 69.9-mg/dL (95% CI, 68.1-71.6; P = 7.1 × 10 −1363) lower triglyceride levels and 0.7-mg/dL (95% CI, 0.03-1.4; P = .04) higher LDL-C levels; while the LDLR score was associated with 14.2-mg/dL (95% CI, 13.6-14.8; P = 1.4 × 10 −465) lower LDL-C and 1.9-mg/dL (95% CI, 0.1-3.9; P = .04) lower triglyceride levels. Despite these differences in associated lipid levels, the LPL and LDLR scores were associated with similar lower risk of CHD per 10-mg/dL lower level of ApoB-containing lipoproteins (OR, 0.771 [95% CI, 0.741-0.802], P = 3.9 × 10 −38 and OR, 0.773 [95% CI, 0.747-0.801], P = 1.1 × 10 −46 , respectively). In multivariable mendelian randomization analyses, the associations between triglyceride and LDL-C levels with the risk of CHD became null after adjusting for differences in ApoB (triglycerides: OR, 1.014 [95% CI, 0.965-1.065],

Concentrations of the atherogenic Lp(a) are elevated in familial hypercholesterolaemia: a sib pair and family analysis

European Journal of Human Genetics, 1998

for LDLR mutations and for apo(a) genotype. Three lines of evidence showed a significant effect of FH on Lp(a) levels: (1) Lp(a) values were significantly higher in FH individuals compared to non-FH relatives (p < 0.001), although the distribution of apo(a) alleles was not different in the two groups; (2) comparison of Lp(a) concentrations in 28 sib pairs, identical by descent (i.b.d.) at the apo(a) locus but non-identical for LDLR status, extracted from this large sample demonstrated significantly elevated Lp(a) concentrations in sibs with FH (p < 0.001); (3) single i.b.d. apo(a) alleles were associated with significantly higher Lp(a) concentrations (p < 0.0001) in FH than non-FH family members. Variability in associated Lp(a) levels also depended on FH status and was highest when i.b.d. alleles were present in FH subjects and lowest when present in non-FH individuals. The study demonstrates that sib pair analysis makes it possible to detect the effect of a minor gene in the presence of the effect of a major gene. Given the interactive effect of elevated LDL and high Lp(a) on CHD risk our data suggest that elevated Lp(a) may add to the CHD risk in FH subjects.

Functional analysis of six uncharacterised mutations in LDLR gene || Publ. in: Atherosclerosis 2019, 291: 44-51 || Author: Roberto Colombo (2) + 8 co-authors || Impact Factor: 4.26 || Ranking: 42/358 Cardiology and Cardiovascular Medicine

BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is a primary hyperlipemia. It is an autosomal dominant genetic disorder of lipoproteins metabolism mainly caused by mutations in the low density lipoprotein receptor gene (LDLR). We aimed to investigate the functional impact on the low density lipoprotein receptor (LDLR) activity of six uncharacterised variants located in the coding region of the LDLR gene, namely c.428G > T, c.640T > C, c.1708C > T, c.1736A > T, c.1981C > G and c.2114C > G (NM_000527.4) and to attempt to define their clinical status. METHODS: Functional studies were carried out using site-directed mutagenesis techniques and expression of LDLR protein in vitro. Results were correlated with clinical data and in silico analyses in order to assess the physiopathological role of these variants. RESULTS: This work provides functional information about 6 uncharacterised mutations in LDLR. CONCLUSIONS: The six variants studied here appeared to affect the LDLR function in vitro to different degrees, ranging from receptors with normal to slightly reduced activity to receptors exhibiting less than 10% of the wild-type activity. According to these studies and The American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines, two variants could be classified as "Likely Benign" (p.(Ala705Gly) and p.(Leu570Phe)), three variants as "Pathogenic" (p.(Asp579Val), p.(Cys143Phe) and p.(Trp214Arg)) and one variant as "Likely Pathogenic" (p.(Pro661Ala)).