Recurrence near given sets and the complexity of the Casati–Prosen map (original) (raw)

Abstract

We prove a quantitative recurrence result which allow to estimate the speed of approaching of a generic orbit to the discontinuities of a map. This result is applied to the study of complexity indicators for individual orbits generated by a certain zero-entropy discontinuous maps which are related to polygonal billiards and quantum chaos.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (12)

  1. Argenti, F; Benci, V; Cerrai, P; Cordelli, A; Galatolo, S; Menconi, G. Information and dynamical systems: a concrete measurement on sporadic dynamics. Classical and quantum complexity and non- extensive thermodynamics (Denton, TX, 2000). Chaos Solitons Fractals 13 (2002), no. 3, 461-469.
  2. Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, P. On De- vaney's definition of chaos. Amer. Math. Monthly 99 (1992), no. 4, 332-334.
  3. L Barreira, B Saussol, Hausdorff dimension of measures via Poincaré recurrence, Commun. Math. Phys., 219 (2001), 443-463.
  4. C. Bonanno , S. Galatolo and S. Isola, Recurrence and algorithmic information Nonlinearity 17 (2004) 1057-1074.
  5. A Brudno, Entropy and the complexity of trajectories of dynami- cal systems, Russ. Math. Surv. 2 (1983), 127-151 (English transl.).
  6. Chaitin G.J. Information, randomness and incompleteness. Pa- pers on algorithmic information theory. World Scientific, Singa- pore 1987.
  7. I.P. Cornfeld, S.V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York (1982).
  8. G. Casati and T. Prosen, Mixing property of triangular billiards, Physical Review Letters, 83, n.23 (1999), 4729-4732.
  9. G. Casati and T. Prosen, The triangle map: a model of quantum chaos, , Physical Review Letters, 85, (2000), 4261.
  10. M. Degli Esposti and S. Graffi (Editors),The Mathematical Aspects of Quantum Maps, Lecture Notes in Physics 618, (2003).
  11. H. Furstenberg, Strict Ergodicity and Trasformation of the Torus,Amer. J. Math. 83, (1961), 573.
  12. S Galatolo, Complexity, initial condition sensitivity, dimension and weak chaos in dynamical systems Nonlinearity 16, Number 4, July 2003, 1219-1239.