Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein (original) (raw)
Related papers
TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions
Virology, 1992
The coding potential of the open reading frame ORF4 (82 amino acids) of transmissible gastroenteritis virus (TGEV) has been confirmed by expression using a baculovirus vector. Five monoclonal antibodies (MAbs) raised against the 10K recombinant product immunoprecipitated a polypeptide of a similar size in TGEV-infected cells. Immunofluorescence assays performed both on insect and mammalian cells revealed that ORF4 was a membrane-associated protein, a finding consistent with the prediction of a membrane-spanning segment in ORF4 sequence. Two epitopes were localized within the last 21 C-terminal residues of the sequence through peptide scanning and analysis of the reactivity of a truncated ORF4 recombinant protein. Since the relevant MAbs were found to induce a cell surface fluorescence, these data suggest that ORF4 may be an integral membrane protein having a Cexo-Nendo orientation. Anti-ORF4 MAbs were also used to show that ORF4 polypeptide may be detected in TGEV virion preparations, with an estimated number of 20 molecules incorporated per particle. Comparison of amino acid sequence data provided strong evidence that other coronaviruses encode a polypeptide homologous to TGEV ORF4. Our results led us to propose that ORF4 represents a novel minor structural polypeptide, tentatively designated SM (small membrane protein).
Comparative analysis of human coronavirus-NL63 ORF3 protein homologues
2009
It has been reported in some studies that the newly discovered human coronavirus NL-63 (HCoVNL63) is one of the most common coronaviruses associated with acute respiratory infections. HCoVNL63 was first isolated in 2004 from a 7 month old infant in Holland. The HCoV-NL63 genome encodes for one accessory protein, ORF3. This reports the computational analysis of human coronavirus NL63 ORF3 by comparing the amino acid sequences of coronavirus ORF3-homologues. The HCoV-NL63 ORF3 gene was found to encode a putative protein ~25.6 kDa in size. ORF3 was predicted to contain three potential transmembrane regions. The amino acid sequence of HCoVNL63 ORF3 was shown to be most similar to HCoV 229E ORF4 (43% identity; 62% similarity).
Journal of Virology, 2006
The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. ...
Virology, 1996
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a small enveloped virus containing a positive-strand RNA genome, possesses at least three major structural proteins designated N, M, and E. The N protein is considered as the major component of the nucleocapsid, whereas M and E are membrane-associated. Previous studies using peptide-specific antibodies assigned these proteins to ORFs 7, 6, and 5, respectively. In the present report, monospecific antisera raised against Escherichia coli-expressed ORFs 5, 6, and 7 products were used to study the synthesis and processing of PRRSV structural proteins in the highly permissive MARC-145 cell line. Treatment of viral proteins with various glycosidases showed that only E was modified by N-linked glycans. Pulse-chase experiments revealed that intracellular transport of the major envelope glycoprotein was delayed in the premedial Golgi compartment. During the first 30 min of chase, E undergoes a gradual downward shift of its apparent molecular weight, thought to result from trimming of the mannose-rich glycan structures. Once E is transported to the medial Golgi or proximal elements, some molecules undergo complete processing of all their high-mannose N-linked oligosaccharides to complex type, while in other molecules only a fraction of N-linked glycans are terminally glycosylated. These two differentially glycosylated forms of E were found to be incorporated into extracellular virions. In cells and virions, both M and E were shown to occur in heterodimeric complexes linked by disulfide bonds. The oligomerization process, as analyzed from pulse-chase experiments, showed that M and E are incorporated into ME complexes with different kinetics and efficiencies, in a fashion similar to their counterparts in equine arteritis virus. Apparently, all steps of E protein N-glycans processing proceed after its association with M which occurs in the endoplasmic reticulum (ER). In the infected cells, E and M appear highly membrane-associated, while N is predominantly cytosolic.
The Journal of Cell Biology, 1987
The E1 glycoprotein of the avian coronavims infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membranespanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membranespanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellulady like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain.
Canine herpesvirus ORF2 is a membrane protein modified by N-linked glycosylation
Virus Research, 2002
Canine herpesvirus (CHV) ORF2, located downstream of the glycoprotein C (gC) gene, has homologues with some of the alphaherpesviruses. To characterize CHV OFR2, a recombinant CHV carrying a LacZ gene in the ORF2 locus, and recombinant vaccinia virus expressing ORF2 protein were constructed. Northern blot analysis revealed ORF2 and a g2 class late gene, and its protein product was detectable in CHV-infected cells reacted with ORF2 protein antiserum. Tunicamycin and N-glycosidase F treatment revealed that the ORF2 protein was modified by N-linked glycosylation. Fractionation and immune fluorescence analyses of the CHV-infected cells showed the ORF2 as a membrane protein transportable to the surface of infected cells. In vitro, the ORF2 protein did not affect viral replication and cell-to-cell viral spreading. Present findings represent the first evidence pointing to the CHV ORF2 as a membrane protein modified by an N-linked glycosylation.
Journal of Virology, 2001
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of 35 S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.