Biologicals and biotherapeutics Treatment of novel IL17A inhibitor in glioblastoma implementing 3rd generation co-culture cell line and patient-derived tumor model (original) (raw)
Related papers
European Journal of Pharmacology, 2017
Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17 A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P < 0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P < 0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P < 0.05)], angiogenesis [CD34 (P < 0.05)], VEGF, IL17A and cell proliferation [Ki67 (P < 0.05)] and caused a significant increase of Bax, caspase and FasL (P < 0.05), compared with untreated animals. Additionally, Leptin, LPL (P < 0.01), FFA (P < 0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.
Combination of anti-VEGF therapy and temozolomide in two experimental human glioma models
Journal of Neuro-Oncology, 2013
Anti-angiogenic agents, such as bevacizumab (BEV), can induce normalization of the blood brain barrier, which may influence the penetration and activity of a co-administered cytotoxic drug. However, it is unknown whether this effect is associated with a benefit in overall survival. This study employed intracranial human glioma models to evaluate the effect of BEV alone and in combination with temozolomide (TMZ) and/or radiation therapy (XRT) on overall survival. One hundred eight male athymic rats were intracranially injected with either U251 or U87 human glioma. Ten or eleven days after tumor inoculation, animals bearing U251 and U87, respectively, were treated with: TMZ alone (50 mg/kg for 5 consecutive days, P.O.), BEV alone (15 mg/kg, I.V.), a combination of TMZ and BEV, or a combination of TMZ, BEV, and a single fraction of XRT (20 Gy). Controls received no treatment. The U87 experiment was repeated and the relationship between survival and the extent of anti-angiogenesis via anti-laminin antibodies for the detection of blood vessels was assessed. In both U87 glioma experiments, all of the treatment groups had a statistically significant increase in survival as compared to the control groups. Also, for both U87 experiments the combination groups of TMZ and BEV had significantly better survival when compared to either treatment administered alone, with 75 % of animals demonstrating long-term survival (LTS) (defined as animals alive 120 days after tumor implantation) in one experiment and 25 % LTS in the repeat experiment. In the U251 glioma experiment, all treated groups (except BEV alone) had significantly improved survival as compared to controls with minimal statistical variance among groups. The percent vessel area was lowest in the group of animals treated with BEV alone. The addition of BEV to TMZ and/or XRT had variable effect on prolonging survival in the two human glioma models tested with reduced tumor vascularity in groups treated with BEV. These results indicate that BEV has anti-angiogenic activity and does not seem to hinder the effect of TMZ.
International Journal of Cancer, 2002
Human neuroblastoma (NB) tumors elaborate angiogenic peptides, and enhanced angiogenesis correlates with their aggressive behavior, metastatic spread and poor clinical outcome. Hence, inhibition of angiogenic factor production may represent a potential therapeutic target for NB treatment. There is currently little information regarding the stimuli that control NB production of angiogenic mediators. In this study, we analyzed the effects of hypoxia, a common feature of solid tumors and a major drive to tumor angiogenesis, and of PA, a tryptophan catabolite produced under inflammatory conditions and endowed with several biologic properties, on the production of the angiogenic activator VEGF by advanced-stage human NB cell lines. We demonstrate that both stimuli are potent inducers of VEGF expression and secretion. VEGF upregulation by PA involved iron chelation because iron sulfate prevented this effect whereas the ironchelating agent DFX induced VEGF production. Conversely, the CDK inhibitor Flp completely blocked VEGF induction by hypoxia. This effect occurred as early as 3 hr after stimulation and did not require de novo protein synthesis. Moreover, Flp exerted similar inhibitory activity on VEGF induction by PA or DFX, suggesting that this compound targets an essential step in the signaling pathway that leads to VEGF expression. Our findings demonstrate that PA can modulate angiogenic factor production by tumor cells and establish the importance of Flp as an inhibitor of VEGF production by human NB.
Lipids in Health and Disease, 2009
Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8%) and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 ± 16%) and the VEGF receptor Flt1 (57 ± 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 ± 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11%) of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Can Evaluation of Targeted Therapy in Oncology Be Improved by Means of 18F-FLT?
Journal of Nuclear Medicine, 2010
Molecular imaging of biological processes may allow detection of therapy effects before the tumor is reduced in size. The most frequently used PET tracer in oncology, 2-[ 18 F]fluoro-2-deoxyglucose (FDG), suffers from low specificity due to uptake in inflammatory cells. The proliferation marker, 3'-[ 18 F]fluoro-3'-deoxy-L-thymidine (FLT), is less influenced by the inflammatory response following therapy but here disease-and drug-specific effects need to be considered. Since cancer therapy mainly intends to eliminate cancer cells, imaging of cell death offers a direct way to image therapy response. This review gives an overview of the radiopharmaceutical development and in vivo evaluation of radioligands that have emerged so far for detection and assessment of apoptosis and necrosis. Two radiopharmaceuticals that can image cell death have made it to clinical trials for follow up of tumor treatment: i) 99m Tc-and 123 I-labelled AnxA5 for the response to treatment of for example lymphoma and lung cancer and ii) 18 F-ML10 for the evaluation of brain tumors post-radiation. Other agents need further optimization.
Nuclear Medicine and Biology, 2016
Background: The radiolabeled amino acid O-(2-18 F-fluoroethyl)-L-tyrosine (FET) and thymidine analogue 3′-deoxy-3′-18 F-fluorothymidine (FLT) are widely used for positron emission tomography (PET) brain tumor imaging; however, comparative studies are scarce. The aim of this study therefore was to compare FLT and FET PET for the assessment of anti-VEGF response in glioblastoma xenografts. Methods: Xenografts with confirmed intracranial glioblastoma were treated with anti-VEGF therapy (B20-4.1) or saline as control. Weekly bioluminescence imaging (BLI), FLT and FET PET/CT were used to follow treatment response. Tracer uptake of FLT and FET was quantified using maximum standardized uptake (SUV max) values and tumor-to-background ratios (TBRs). Survival, the Ki67 proliferation index and micro-vessel density (MVD) were evaluated. Results: In contrast to FLT TBRs, FET TBRs were significantly lower as early as one week after treatment initiation in the anti-VEGF group as compared to the control group. Following two weeks of treatment, both FLT and FET TBRs were significantly lower in the anti-VEGF group. In contrast, no significant difference between the treatment groups was detected using BLI. Furthermore, we found a significantly lower MVD in the anti-VEGF group as compared to the control group. However, we found no difference in the Ki67 proliferation index or mean survival time. Conclusion: FET appears to be a more sensitive tracer than FLT to measure early response to anti-VEGF therapy with PET. Advances in knowledge and implications for patient care FET PET appears to be an early predictor of anti-VEGF efficacy. Confirmation of these results in clinical studies is needed.
Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model
Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2004
Increased glucose metabolism of inflammatory tissues is the main source of false-positive 18 F-FDG PET findings in oncology. It has been suggested that radiolabeled nucleosides might be more tumor specific. Methods: To test this hypothesis, we compared the biodistribution of 3Ј-deoxy-3Ј-18 F-fluorothymidine (FLT) and 18 F-FDG in Wistar rats that bore tumors (C6 rat glioma in the right shoulder) and also had sterile inflammation in the left calf muscle (induced by injection of 0.1 mL of turpentine). Twenty-four hours after turpentine injection, the rats received an intravenous bolus (30 MBq) of either 18 F-FLT (n ϭ 5) or 18 F-FDG (n ϭ 5). Pretreatment of the animals with thymidine phosphorylase (Ͼ1,000 U/kg, intravenously) before injection of 18 F-FLT proved to be necessary to reduce the serum levels of endogenous thymidine and achieve satisfactory tumor uptake of radioactivity. Results: Tumor-to-muscle ratios of 18 F-FDG at 2 h after injection (13.2 Ϯ 3.0) were higher than those of 18 F-FLT (3.8 Ϯ 1.3). 18 F-FDG showed high physiologic uptake in brain and heart, whereas 18 F-FLT was avidly taken up by bone marrow. 18 F-FDG accumulated in the inflamed muscle, with 4.8 Ϯ 1.2 times higher uptake in the affected thigh than in the contralateral healthy thigh, in contrast to 18 F-FLT, for which this ratio was not significantly different from unity (1.3 Ϯ 0.4). Conclusion: In 18 F-FDG PET images, both tumor and inflammation were visible, but 18 F-FLT PET showed only the tumor. Thus, the hypothesis that 18 F-FLT has a higher tumor specificity was confirmed in our animal model.
Scientific Reports
Glioblastoma (GBM) is one of the most aggressive types of cancer, which begins within the brain. It is the most invasive type of glioma developed from astrocytes. Until today, Temozolomide (TMZ) is the only standard chemotherapy for patients with GBM. Even though chemotherapy extends the survival of patients, there are many undesirable side effects, and most cases show resistance to TMZ. FL3 is a synthetic flavagline which displays potent anticancer activities, and is known to inhibit cell proliferation, by provoking cell cycle arrest, and leads to apoptosis in a lot of cancer cell lines. However, the effect of FL3 in glioblastoma cancer cells has not yet been examined. Hypoxia is a major problem for patients with GBM, resulting in tumor resistance and aggressiveness. In this study, we explore the effect of FL3 in glioblastoma cells under normoxia and hypoxia conditions. Our results clearly indicate that this synthetic flavagline inhibits cell proliferation and induced senescence in glioblastoma cells cultured under both conditions. In addition, FL3 treatment had no effect on human brain astrocytes. These findings support the notion that the FL3 molecule could be used in combination with other chemotherapeutic agents or other therapies in glioblastoma treatments. Flavaglines are natural products isolated from Aglaia genus plants possessing unique anticancer properties. One synthetic flavagline, called FL3, is known for its anticancer effects without being toxic to healthy cells 1,2. Flavaglines were isolated for the first time in 1982 based on their strong anti-leukemic activity 3. Cytotoxic effects of flavaglines has been reported in a lot of cancer cell lines, such as lung, breast, and colon cancer 4 , leading to the inhibition of proliferation and thus inducing cell cycle arrest or apoptosis in tumor cells. Different mechanisms by which FL3 targets cancer cells were reported in the literature. It was shown that in urothelial carcinoma cells, FL3 can directly binds to Prohibitin 1 (PHB) preventing its phosphorylation by Akt, leading to a decrease of PHB in mitochondria, which causes a mitochondria-related apoptosis and cell cycle inhibition 5,6. PHB is an ubiquitous and evolutionarily conserved protein expressed in different cellular compartments including the nucleus, cytoplasm and mitochondria 7 , it is involved in diverse biological processes such as cell proliferation, resistance to apoptosis, maintenance and integrity of mitochondria 7,8. Also, FL3 was shown to selectively kill cancer stem-like cells through the p38 mitogen-activated protein kinase (MAPK)-dependent caspase-3-dependent pro-apoptotic
Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas
Brain Research Reviews, 2004
Progressive tumor growth depends on angiogenesis to sustain metabolic needs of tumor cells, thus providing a potential target for cancer therapy. Malignant gliomas have retained their dismal prognosis despite aggressive multimodal conventional therapeutic approaches, illustrating the need for novel therapeutic strategies. Gliomas are a suitable tumor type for probing angiogenesis inhibition as their proliferation is characterized by a prominent proliferative vascular component. In the present review, we discuss the current status and future directions of angiogenesis inhibition in gliomas. We focus on recently developed approaches inducing an antiangiogenic response such as targeted gene delivery, protein tyrosine kinase inhibitors and encapsulated producer cells. Although several of these modalities have shown promising results on their own, the true potential of these novel approaches lies in their combined use with radiotherapy or 'metronomically scheduled' chemotherapy. A combined approach potentially counteracts the selective pressure on hypoxia-resistant malignant tumor cells, circumvents endothelial resistance induced by local cytoprotective responses and enhances the delivery of cytotoxic agents by normalizing vascular physiology. Surrogate markers of angiogenesis currently under study may provide accurate assessment of response in individual patients. Future research on endothelial markers expressed on tumor-associated vasculature as well as endothelial responses to cytotoxic treatment will provide new avenues for molecularly targeted therapy in malignant gliomas. D