Metabolic Mapping of MCF10A Human Breast Cells via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH (original) (raw)

Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition

J Biomed Opt, 2014

Measurement of endogenous free and bound NAD(P)H relative concentrations in living cells is a useful method for monitoring aspects of cellular metabolism, because the NADH∕NAD þ reduction-oxidation pair is crucial for electron transfer through the mitochondrial electron transport chain. Variations of free and bound NAD(P)H ratio are also implicated in cellular bioenergetic and biosynthetic metabolic changes accompanying cancer. This study uses two-photon fluorescence lifetime imaging microscopy (FLIM) to investigate metabolic changes in MCF10A premalignant breast cancer cells treated with a range of glycolysis inhibitors: namely, 2 deoxy-D-glucose, oxythiamine, lonidamine, and 4-(chloromethyl) benzoyl chloride, as well as the mitochondrial membrane uncoupling agent carbonyl cyanide m-chlorophenylhydrazone. Through systematic analysis of FLIM data from control and treated cancer cells, we observed that all glycolytic inhibitors apart from lonidamine had a slightly decreased metabolic rate and that the presence of serum in the culture medium generally marginally protected cells from the effect of inhibitors. Direct production of glycolytic L-lactate was also measured in both treated and control cells. The combination of these two techniques gave valuable insights into cell metabolism and indicated that FLIM was more sensitive than traditional biochemical methods, as it directly measured metabolic changes within cells as compared to quantification of lactate secreted by metabolically active cells.

Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level

Journal of Photochemistry and Photobiology B: Biology, 2009

Reduced nicotinamide adenine dinucleotide, NADH, is a major electron donor in the oxidative phosphorylation and glycolytic pathways in cells. As a result, there has been recent resurgence in employing intrinsic NADH fluorescence as a natural probe for a range of cellular processes that include apoptosis, cancer pathology, and enzyme kinetics. Here, we report on two-photon fluorescence lifetime and polarization imaging of intrinsic NADH in breast cancer (Hs578T) and normal (Hs578Bst) cells for quantitative analysis of the concentration and conformation (i.e., freeto-enzyme-bound ratios) of this coenzyme. Two-photon fluorescence lifetime imaging of intracellular NADH indicates sensitivity to both cell pathology and inhibition of the respiratory chain activities using potassium cyanide (KCN). Using a newly developed noninvasive assay, we estimate the average NADH concentration in cancer cells (168 ± 49 μM) to be ~ 1.8 fold higher than in breast normal cells (99 ± 37 μM). Such analyses indicate changes in energy metabolism and redox reactions in normal breast cells upon inhibition of the respiratory chain activity using KCN. In addition, timeresolved associated anisotropy of cellular autofluorescence indicates population fractions of free (0.18 ± 0.08) and enzyme-bound (0.82 ± 0.08) conformations of intracellular NADH in normal breast cells. These fractions are statistically different from those in breast cancer cells (free: 0.25 ± 0.08; bound: 0.75 ± 0.08). Comparative studies on the binding kinetics of NADH with mitochondrial malate dehydrogenase and lactate dehydrogenase in solution mimic our findings in living cells. These quantitative studies demonstrate the potential of intracellular NADH dynamics (rather than intensity) imaging for probing mitochondrial anomalies associated with neurodegenerative diseases, cancer, diabetes, and aging. Our approach is also applicable to other metabolic and signaling pathways in living cells, without the need for cell destruction as in conventional biochemical assays.

Metabolic Profiling of Live Cancer Tissues Using NAD(P)H Fluorescence Lifetime Imaging

Methods in molecular biology, 2019

Altered metabolism is a hallmark of cancer, both resulting from and driving oncogenesis. The NAD and NADP redox couples play a key role in a large number of the metabolic pathways involved. In their reduced forms, NADH and NADPH, these molecules are intrinsically fluorescent. As the average time for fluorescence to be emitted following excitation by a laser pulse, the fluorescence lifetime, is exquisitely sensitive to changes in the local environment of the fluorophore, imaging the fluorescence lifetime of NADH and NADPH offers the potential for label-free monitoring of metabolic changes inside living tumours. Here, we describe the biological, photophysical and methodological considerations required to establish fluorescence lifetime imaging (FLIM) of NAD(P)H as a routine method for profiling the metabolism of living cancer cells and tissues.

In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia

Proceedings of the National Academy of Sciences, 2007

Metabolic imaging of the relative amounts of reduced NADH and FAD and the microenvironment of these metabolic electron carriers can be used to noninvasively monitor changes in metabolism, which is one of the hallmarks of carcinogenesis. This study combines cellular redox ratio, NADH and FAD lifetime, and subcellular morphology imaging in three dimensions to identify intrinsic sources of metabolic and structural contrast in vivo at the earliest stages of cancer development. There was a significant (P < 0.05) increase in the nuclear to cytoplasmic ratio (NCR) with depth within the epithelium in normal tissues; however, there was no significant change in NCR with depth in precancerous tissues. The redox ratio significantly decreased in the less differentiated basal epithelial cells compared with the more mature cells in the superficial layer of the normal stratified squamous epithelium, indicating an increase in metabolic activity in cells with increased NCR. However, the redox ratio was not significantly different between the superficial and basal cells in precancerous tissues. A significant decrease was observed in the contribution and lifetime of protein-bound NADH (averaged over the entire epithelium) in both low-and high-grade epithelial precancers compared with normal epithelial tissues. In addition, a significant increase in the protein-bound FAD lifetime and a decrease in the contribution of protein-bound FAD are observed in high-grade precancers only. Increased intracellular variability in the redox ratio, NADH, and FAD fluorescence lifetimes were observed in precancerous cells compared with normal cells.

Assessment of Cellular Redox State Using NAD(P)H Fluorescence Intensity and Lifetime

BIO-PROTOCOL

NADH and NADPH are redox cofactors, primarily involved in catabolic and anabolic metabolic processes respectively. In addition, NADPH plays an important role in cellular antioxidant defence. In live cells and tissues, the intensity of their spectrally-identical autofluorescence, termed NAD(P)H, can be used to probe the mitochondrial redox state, while their distinct enzymebinding characteristics can be used to separate their relative contributions to the total NAD(P)H intensity using fluorescence lifetime imaging microscopy (FLIM). These protocols allow differences in metabolism to be detected between cell types and altered physiological and pathological states.

Separating NADH and NADPH fluorescence in live cells and tissues using FLIM

Nature Communications, 2014

NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.

Fluorescence lifetime imaging of free and protein-bound NADH

1992

We introduce a methodology, fluorescence lifetime imaging (FLIM), in which the contrast depends on the fluorescence lifetime at each point in a two-dimensional image and not on the local concentration and/or intensity of the fluorophore. We used FLIM to create lifetime images of NADH when free in solution and when bound to malate dehydrogenase. This represents a challengi case for lifetime imaging because the NADH decay times are just 0.4 and 1.0 ns in the free and bound states, respectively. In the present apparatus,

Probing of cardiomyocyte metabolism by spectrally resolved lifetime detection of NAD(P)H fluorescence

2007

NAD(P)H, crucial in effective management of cellular oxidative metabolism and the principal electron donors for enzymatic reactions, is a major source of autofluorescence induced in cardiac cells following excitation by UV light. Spectrally-resolved timecorrelated single photon counting was used to simultaneously measure the fluorescence spectra and fluorescence lifetimes of NAD(P)H, following excitation by a pulsed picosecond 375 nm laser diode. Spectra, as well as fluorescence lifetimes of NADH and NADPH molecules were investigated in solution at different concentrations Effects of their respective dehydrogenation by lipoamide dehydrogenase (LipDH) or glutathione reductase (GR) were also questioned. NAD(P)H autofluorescence recorded in vitro was compared to the one measured in freshly isolated cardiac cells. We observed a good comparability between NAD(P)H parameters recorded in solution and in cells.

Local redox conditions in cells imaged via non-fluorescent transient states of NAD(P)H

Scientific Reports, 2019

The autofluorescent coenzyme nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) are major determinants of cellular redox balance. Both their fluorescence intensities and lifetimes are extensively used as label-free readouts in cellular metabolic imaging studies. Here, we introduce fluorescence blinking of NAD(P)H, as an additional, orthogonal readout in such studies. Blinking of fluorophores and their underlying dark state transitions are specifically sensitive to redox conditions and oxygenation, parameters of particular relevance in cellular metabolic studies. We show that such dark state transitions in NAD(P)H can be quantified via the average fluorescence intensity recorded upon modulated one-photon excitation, so-called transient state (TRAST) monitoring. Thereby, transitions in NAD(P)H, previously only accessible from elaborate spectroscopic cuvette measurements, can be imaged at subcellular resolution in live cells. We then demonstrate that these tra...