TASI Lectures: Cosmology for String Theorists (original) (raw)

String Cosmology: Basic Ideas and General Results

1995

After recalling a few basic concepts from cosmology and string theory, I will outline the main ideas/assumptions underlying (our own group's approach to) string cosmology and show how these lead to the definition of a two-parameter family of ``minimal" models. I will then briefly explain how to compute, in terms of those parameters, the spectrum of scalar, tensor and electromagnetic perturbations, and mention their most relevant physical consequences. More details on the latter part of this talk can be found in Maurizio Gasperini's contribution to these proceedings.

Aspects of String Cosmology

We review recent progress in string cosmology, where string dualities are applied so as to obtain complete cosmological evolutions, free of any essential singularities. Two classes of models are analyzed. The first class consists of string gas cosmologies associated to certain thermal configurations of type II N=(4,0) models. Finite temperature is introduced along with non-trivial "gravito-magnetic" fluxes that lift the Hagedorn instabilities of the canonical ensemble and restore thermal T-duality symmetry. At a critical maximal temperature additional thermal states become massless sourcing stringy S-branes, which facilitate a bounce between the two dual, asymptotically cold phases. Unlike previous incarnations of pre-Big Bang cosmologies, the models remain perturbative throughout the cosmological evolution. The second class consists of exact solutions to classical string theory that admit a Euclidean description in terms of compact parafermionic worldsheet systems. The Eu...