Articular adipose tissue resident macrophages in rheumatoid arthritis patients: potential contribution to local abnormalities (original) (raw)
Related papers
Arthritis care & research, 2017
Objective Adipose tissue macrophages (ATMs) are a potent source of inflammatory cytokines with profound effects on adipose tissue function, yet their potential role in rheumatoid arthritis (RA) pathobiology is largely unstudied. Methods Periumbilical subcutaneous adipose tissue was obtained from 36 RA patients and 22 non-RA controls frequency matched on demographics and BMI. Samples were stained for the macrophage marker CD68 and the average proportion of ATMs, crown-like structures (CLSs: peri-adipocyte aggregates of three or more ATMs), and fibrosis were compared between groups. Results The adjusted proportion of ATMs among all nucleated cells was 76% higher in RA vs. non-RA samples (37.7 vs. 21.3%, respectively; p<0.001), and the adjusted average number of CLSs was more than 1.5-fold higher in the RA group compared with controls (0.58 vs. 0.23 CLSs/high-power field, respectively; p=0.001). ATMs were significantly more abundant in early RA and in those seropositive for anti-CCP...
Annals of the Rheumatic Diseases, 2012
Objectives (1) To compare spontaneous and stimuliinduced adipocytokine secretion by articular adipose tissue (AAT) and synovial membrane (SM) explants obtained from patients with rheumatoid arthritis (RA). (2) To investigate the biological activity of AAT and SM released factors. Methods Tissues were obtained from patients undergoing joint replacement surgery. Tissue explants were treated with proinfl ammatory cytokines relevant to RA pathogenesis (interleukin 1β (IL-1β), tumour necrosis factor (TNF), interferon γ, IL-15, IL-17, IL-23). Selected adipocytokine (TNF, IL-6, IL-8, IL-1β, IL-1Ra, adiponectin, leptin) concentrations were measured in culture supernatants using ELISA. The biological activity of tissue-conditioned media was evaluated by measuring production of selected factors (IL-6, IL-8, Dickkopf-1, osteoprotegerin) by fi broblast-like synoviocytes (FLS). Results Spontaneous cytokine release from AAT was ≤12% of that produced by SM, while leptin was secreted in similar amounts. AAT was highly reactive to proinfl ammatory cytokines (IL-1β>TNF). AAT treated with IL-1β released four times more leptin, similar amounts of IL-6 and IL-8 and about 20% of TNF, as compared with SM. Upon activation, the IL-1 receptor antagonist (IL-1Ra)/IL-1β ratio was higher in AAT than in SM cultures. Irrespective of activation status, SM produced twice as much adiponectin as AAT. Conditioned media from AAT and SM cultures similarly upregulated IL-6, IL-8, Dickkopf-1 and osteoprotegerin production by rheumatoid FLS. Conclusion Rheumatoid AAT is highly reactive tissue which upon stimulation secretes considerable amounts of proinfl ammatory (IL-6, IL-8, TNF) and anti-infl ammatory (IL-1Ra) cytokines and classical adipokines. This tissue releases biologically active factors that intensify pathogenic activities of rheumatoid FLS. Thus, AAT should be considered an important contributor to the pathological processes taking place in the RA joint.
Inflammation, 2018
Rheumatoid arthritis (RA) and osteoarthritis (OA) are characterized by joint and systemic high- or low-grade inflammation, respectively. Adipose tissue (AT) may contribute to the pathogenesis of these diseases. To address this issue, we investigated whether basal and pro-inflammatory cytokine (IL-1β)-triggered release of adipocytokines (TNF, IL-6, IL-10, IL-1Ra, TGFβ, CCL2/MCP-1, CCL5/RANTES, MMP-3) from subcutaneous (ScAT) and intraarticular (AAT) adipose tissues of RA and OA patients mirror differences between these diseases in an intensity of systemic and local inflammation. We found that in both diseases basal adipocytokine release was usually higher from AAT than ScAT, reflecting stronger local than systemic inflammation. However, ScAT secreted considerable amounts of pro- and anti-inflammatory factors as well. Spontaneous secretion of some adipocytokines (MMP-3 and/or TNF, CCL2/MCP-1, IL-1Ra) was higher in osteoarthritis than rheumatoid ATs and probably caused by weaker anti-i...
Effect of microfragmented adipose tissue on osteoarthritic synovial macrophage factors
Journal of Cellular Physiology, 2018
Cell-based therapies using adipose-derived mesenchymal stromal cells (ADMSCs) have shown promising results for the treatment of osteoarthritis (OA). In fact, ADMSCs are now indicated as one of the most powerful cell sources through their immunomodulatory and anti-inflammatory activities. Recently, an innovative onestep closed device was developed to obtain microfragmented adipose tissue (MF) to avoid the need for good manufacturing practices for ADMSCs expansion while maintaining their regenerative potential. The aim of this study was to assess the mechanisms of action of MF and ADMSCs from MF (MF-ADMSCs) on an inflammatory cell model of OA synoviocytes. We found that MF produced low levels of inflammatory factors such as interleukin 6 (IL-6), CC-chemokine ligand 5/receptoractivated normal T-cell expressed and secreted (CCL5/RANTES), CC-chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1), and CC-chemokine ligand 3/macrophage inflammatory protein-1α (CCL3/MIP-1α), and a higher level only of CXC-chemokine ligand 8/interleukin 8 compared with MF-ADMSCs. Matrix metalloproteinase 9 (MMP-9) degradative factor but released a lower level of its inhibitor tissue inhibitor of the metalloproteinase (TIMP-1). MF in coculture with synoviocytes significantly induced both the metabolic activity and the release of IL-6. In contrast, MF, not MF-ADMSCs, partially decreased CCL5/RANTES. Moreover, MF reduced the release of both macrophage-specific chemokines (CCL2/MCP-1 and CCL3/MIP-1α) and degradative marker MMP-9. Interestingly, MF increased TIMP-1 (the MMP-9 inhibitor) and down-modulated toll-like receptor (TLR4) receptor and key molecules of NFκB pathways. These data evidenced different effects of MF versus MF-ADMSCs on inflamed synoviocytes. MF reduced typical macrophages markers and its potentiality by switching off macrophages activity was strictly dependent on TLR4 and NFκB signaling.
Rheumatology
Objectives Myeloid cells with a monocyte/macrophage phenotype are present in large numbers in the RA joint, significantly contributing to disease; however, distinct macrophage functions have yet to be elucidated. This study investigates the metabolic activity of infiltrating polarized macrophages and their impact on pro-inflammatory responses in RA. Methods CD14+ monocytes from RA and healthy control (HC) bloods were isolated and examined ex vivo or following differentiation into ‘M1/M2’ macrophages. Inflammatory responses and metabolic analysis ± specific inhibitors were quantified by RT-PCR, western blot, Seahorse XFe technology, phagocytosis assays and transmission electron microscopy along with RNA-sequencing (RNA-seq) transcriptomic analysis. Results Circulating RA monocytes are hyper-inflammatory upon stimulation, with significantly higher expression of key cytokines compared with HC (P < 0.05) a phenotype which is maintained upon differentiation into mature ex vivo polariz...
Macrophages in rheumatoid arthritis
Arthritis research, 2000
The abundance and activation of macrophages in the inflamed synovial membrane/pannus significantly correlates with the severity of rheumatoid arthritis (RA). Although unlikely to be the 'initiators' of RA (if not as antigen-presenting cells in early disease), macrophages possess widespread pro-inflammatory, destructive, and remodeling capabilities that can critically contribute to acute and chronic disease. Also, activation of the monocytic lineage is not locally restricted, but extends to systemic parts of the mononuclear phagocyte system. Thus, selective counteraction of macrophage activation remains an efficacious approach to diminish local and systemic inflammation, as well as to prevent irreversible joint damage.
Expansion of a unique macrophage subset in rheumatoid arthritis synovial lining layer
Clinical & Experimental Immunology, 2008
The Z39Ig protein (complement receptor for C3b and iC3b) is expressed on resident tissue macrophages in various tissues. This study was undertaken to examine the distribution of Z39Ig+cells and their phenotypic features in rheumatoid arthritis (RA) synovium, in comparison with those of osteoarthritis (OA) and psoriatic arthritis (PsA) synovium. Monoclonal anti-Z39Ig antibody was produced by immunizing Z39Ig transfected murine pre B cells and used for the identification of Z39Ig+cells. Z39Ig+cells were further stained with antibodies to macrophages, fibroblast-like synoviocytes, complement receptors and dendritic cells by using the double immunostaining method in normal, RA, OA and PsA synovium. RA synovial mononuclear cells were double-stained using anti-Z39Ig and anti-CD11c antibodies and sorted into Z39Ig+CD11c+cells and Z39Ig+CD11c-cells. These cell populations were then analysed by electron microscopy. The expression of the Z39Ig protein was limited to intimal macrophages in normal, RA, OA and PsA synovium. The numbers of Z39Ig+CD11c+cells and the ratios of Z39Ig+CD11c+cells to Z39Ig+cells were increased in the synovial lining layer of RA as compared with those of OA and PsA. The ultrastructural analysis of Z39Ig+CD11c+cells showed the character of macrophages with many secondary lysosomes and swelling of mitochondria. Z39Ig+ cells appeared to be useful for identification of resident tissue macrophages in normal synovium and the corresponding macrophages in the synovial lining layer of inflammatory arthritis. Expansion of Z39Ig+CD11c+cells was characteristic of RA synovial lining layer.
Macrophages in Synovial Inflammation
Frontiers in Immunology, 2011
Synovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of proinflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA). There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and ILl , characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished. Here we will briefly review our current understanding of macrophages and macrophage polarization in RA as well as the elements implicated in controlling polarization, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype, and may represent a novel therapeutic paradigm.