The validity of three snow leopard subspecies: response to Senn et al (original) (raw)

Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation

Conservation …, 1996

The incorporation of precise definitions for taxonomic units into wildlife legislation has necessitated the réévaluation of the taxonomy of endangered and threatened species. We used the subspecies recognition criteria proposed by Avise and Ball (1990) and O'Brien and Mayr (1991) to examirie the infraspecific taxonomy of the leopard, Panthera pardus, a geographically tutdespread species with 27 currently recognized trinomial designations. Samples from named subspecies revealed appreciable genetic diversity using three molecular methods: allozymes, mitochondrial DNA restriction sites, and feline-specific minisatellites. Continental populations and subspecies from Africa and Asia possessed the highest amount of molecular genetic variation, whereas relatively lower amounts of diversity were present in island populations. Molecular data were analyzed using three phylogenetic methods (distance-matrix, maximum parsimony, and maximum likelihood) to resolve genetic differentiation below the species level The combined results revealed phylogenetic distinction of six geographically isolated groups of leopards: (1) African, (2) central Asian, (3) Indian, (4) Sri Lankan, (5) Javan, and (6) east Asian. Based on the combined molecular analyses and supporting morphological data (Miththapala 1992), we recommend that subspecific leopard taxonomy be revised to comprise eight subspecies: (1) P. p. pardus, Africa; (2) P. p. saxicolor, central Asia; (3) P. p. fusca, Indian subcontinent; (4) P. p. kotiya, Sri Lanka; (5) P. p. meVàs, fava; (6) P. p. orientalis, Amur; (7) P. p. japonensis, northern China; and (8) P. p. delacouri, southern China. In most cases, designated subspecies conform to historic geological barriers that would have facilitated allopatric genetic divergence.

Range-Wide Snow Leopard Phylogeography Supports Three Subspecies

Journal of Heredity , 2017

The snow leopard, Panthera uncia, is an elusive high-altitude specialist that inhabits vast, inaccessible habitat across Asia. We conducted the first range-wide genetic assessment of snow leopards based on noninvasive scat surveys. Thirty-three microsatellites were genotyped and a total of 683-bp of mitochondrial DNA sequenced in 70 individuals. Snow leopards exhibited low genetic diversity at microsatellites (AN = 5.8, HO = 0.433, HE = 0.568), virtually no mtDNA variation, and underwent a bottleneck in the Holocene (~8,000 years ago) coinciding with increased temperatures, precipitation, and upward treeline shift in the Tibetan Plateau. Multiple analyses supported three primary genetic clusters: (1) Northern (the Altai region), (2) Central (core Himalaya and Tibetan Plateau), and (3) Western (Tian Shan, Pamir, trans-Himalaya regions). Accordingly, we recognize three subspecies, P. u. irbis (Northern group), P. u. uncia (Western group), and P. u. uncioides (Central group) based upon genetic distinctness, low levels of admixture, unambiguous population assignment, and geographic separation. The patterns of variation were consistent with desert-basin "barrier effects" of the Gobi isolating the northern subspecies (Mongolia), and the trans-Himalaya dividing the central (Qinghai, Tibet, Bhutan, and Nepal) and western subspecies (India, Pakistan, Tajikistan, and Kyrgyzstan). Hierarchical Bayesian clustering analysis revealed additional subdivision into a minimum of six proposed management units: western Mongolia, southern Mongolia, Tian Shan, Pamir-Himalaya, Tibet-Himalaya, and Qinghai, with spatial autocorrelation suggesting potential connectivity by dispersing individuals up to ~ 400 km. We provide a foundation for global conservation of snow leopard subspecies, and set the stage for in-depth landscape genetics and genomic studies.

Phylogeographic analyses of the pampas cat (Leopardus colocola; Carnivora, Felidae) reveal a complex demographic history

Genetics and Molecular Biology, 2018

The pampas cat is a small felid that occurs in open habitats throughout much of South America. Previous studies have revealed intriguing patterns of morphological differentiation and genetic structure among its populations, as well as molecular evidence for hybridization with the closely related L. tigrinus. Here we report phylogeographic analyses encompassing most of its distribution (focusing particularly on Brazilian specimens, which had been poorly sampled in previous studies), using a novel dataset comprising 2,143 bp of the mitogenome, along with previously reported mtDNA sequences. Our data revealed strong population strutucture and supported a west-to-east colonization process in this species' history. We detected two population expansion events, one older (ca. 200 thousand years ago [kya]) in western South America and another more recent (ca. 60-50 kya) in eastern areas, coinciding with the expansion of savanna environments in Brazil. Analyses including L. tigrinus individuals bearing introgressed mtDNA from L. colocola showed a complete lack of shared haplotypes between species, indicating that their hybridization was ancient. Finally, we observed a close relationship between Brazilian/Uruguayan L. colocola haplotypes and those sampled in L. tigrinus, indicating that their hybridization was likely related to the demographic expansion of L. colocola into eastern South America.

Molecular Diversity and Phylogeography of the Asian Leopard Cat, Felis bengalensis, Inferred from Mitochondrial and Y-Chromosomal DNA Sequences

Zoological Science, 2008

To investigate genetic diversity and phylogeography of the Asian leopard cat (Felis bengalensis), mitochondrial DNA (mtDNA) sequences were determined for 39 individuals from various areas. Sequences combining the complete cytochrome b gene (1,140 bp) with the partial control region (646-810 bp) were classified into 24 haplotypes: 21 types from 21 animals, one from eight animals from Tsushima Islands, one from eight animals from Iriomote Island, and one from two animals from Southeast Asia. Phylogenetic trees of the 24 haplotypes clearly showed three clades: a Northern Lineage and Southern Lineages 1 and 2. The Northern Lineage consisted of animals from Tsushima Islands, the Korean Peninsula, the continental Far East, Taiwan, and Iriomote Island. Within the Northern Lineage, genetic contacts could have occurred between geographically neighboring populations before isolation by straits. Southern Lineage 1, comprising Southeast Asian animals, showed higher genetic diversity. Southern Lineage 2 had large genetic distances from other lineages. Within the control region, the Asian leopard cats shared two to four repetitive motifs, and the number of motifs and their constitution were highly variable among individuals. The motifs were polymorphic even within individuals and could be classified into 31 types. Finally, males of mtDNA Southern Lineage 1 had either of two types of the Y-chromosomal gene ZFY, whereas all males of Northern Lineage shared only one type. Our results indicate that the diversity of southern populations is higher and that genetic differentiation among northern local populations reflects past geographical isolation.

Genetic structure and phylogeography of the Leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes

Journal of Heredity, 2017

The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).

Morphological and Genetics Support for a Hitherto Undescribed Spotted Cat Species (Genus Leopardus; Felidae, Carnivora) from the Southern Colombian Andes

Genes

In 1989, a skin of a small spotted cat, from the Galeras Volcano in southern Colombia (Nariño Department), was donated to the Instituto Alexander von Humboldt (identification, ID 5857) at Villa de Leyva (Boyacá Department, Colombia). Although originally classified as Leopardus tigrinus, its distinctiveness merits a new taxonomic designation. The skin is distinct from all known L. tigrinus holotypes as well as from other Leopardus species. Analysis of the complete mitochondrial genomes from 44 felid specimens (including 18 L. tigrinus and all the current known species of the genus Leopardus), the mtND5 gene from 84 felid specimens (including 30 L. tigrinus and all the species of the genus Leopardus), and six nuclear DNA microsatellites (113 felid specimens of all the current known species of the genus Leopardus) indicate that this specimen does not belong to any previously recognized Leopardus taxon. The mtND5 gene suggests this new lineage (the Nariño cat as we name it) is a sister ...

Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus

Molecular Ecology, 2001

Leopards, Panthera pardus , are widely distributed across southern Asia and sub-Saharan Africa. The extent and phylogeographic patterns of molecular genetic diversity were addressed in a survey of 77 leopards from known geographical locales representing 13 of the 27 classical trinomial subspecies. Phylogenetic analysis of mitochondrial DNA sequences (727 bp of NADH5 and control region) and 25 polymorphic microsatellite loci revealed abundant diversity that could be partitioned into a minimum of nine discrete populations, tentatively named here as revised subspecies: P. pardus pardus , P. p. nimr , P. p. saxicolor , P. p. fusca , P. p. kotiya , P. p. delacouri , P. p. japonensis , P. p. orientalis and P. p. melas . However, because of limited sampling of African populations, this may be an underestimate of modern phylogeographic population structure. Combined phylogeographic and population diversity estimates support an origin for modern leopard lineages 470 000 -825 000 years ago in Africa followed by their migration into and across Asia more recently (170 000 -300 000 years ago). Recent demographic reductions likely have led to genetic impoverishment in P. p. orientalis and in the island subspecies P. p. kotiya .

Reconstruction of phylogenetic history to resolve the subspecies anomaly of Pantherine cats

2016

All charismatic big cats including tiger (Panthera tigris), lion (Panthera leo), leopard (Panthera pardus), snow leopard (Panthera uncial), and jaguar (Panthera onca) are grouped into the subfamily Pantherinae. Several mitogenomic approaches have been employed to reconstruct the phylogenetic history of the Pantherine cats but the phylogeny has remained largely unresolved till date. One of the major reasons for the difficulty in resolving the phylogenetic tree of Pantherine cats is the small sample size. While previous studies included only 5‐10 samples, we have used 43 publically available taxa to reconstruct Pantherine phylogenetic history. Complete mtDNA sequences were used from all individuals excluding the control region (15,489bp). A Bayesian MCMC approach was employed to investigate the divergence times among different Pantherine clades. Both maximum likelihood and Bayesian phylogeny generated a dendrogram:Neofelis nebulosa(Panthera tigris(Panthera onca(Panthera uncia(Panthera...

Taxonomic revision of the pampas cat Leopardus colocola complex (Carnivora: Felidae): an integrative approach

Zoological Journal of the Linnean Society, 2020

The pampas cat Leopardus colocola has been subject to conflicting classifications over the years. Currently, one polytypic species with seven subspecies is recognized, but integrative taxonomic study for this debated group has never been done. Here, we combine the broadest morphological coverage of the pampas cat to date with molecular data and ecological niche models to clarify its species composition and test the validity of recently proposed subspecies. The multiple lines of evidence derived from morphology, molecular, biogeography and climatic niche datasets converged on the recognition of five monotypic species: L. braccatus, L. colocola, L. garleppi (including thomasi, budini, steinbachi, crespoi and wolffsohni as synonyms), L. munoai and L. pajeros (including crucina as synonym). These five species are morphologically diagnosable based on skin and skull traits, have evolved in distinct climatic niche spaces and were recovered in molecular species delimitation. Contrary to pre...

African and Asian leopards are highly differentiated at the genomic level

Current Biology, 2021

Leopards are the only big cats still widely distributed across the continents of Africa and Asia. They occur in a wide range of habitats and are often found in close proximity to humans. But despite their ubiquity, leopard phylogeography and population history have not yet been studied with genomic tools. Here, we present population-genomic data from 26 modern and historical samples encompassing the vast geographical distribution of this species. We find that Asian leopards are broadly monophyletic with respect to African leopards across almost their entire nuclear genomes. This profound genetic pattern persists despite the animals' high potential mobility, and despite evidence of transfer of African alleles into Middle Eastern and Central Asian leopard populations within the last 100,000 years. Our results further suggest that Asian leopards originated from a single out-of-Africa dispersal event 500-600 thousand years ago, and are characterised by higher population structuring, stronger isolation-by-distance, and lower heterozygosity than African leopards. Taxonomic categories do not take into account the variability in depth of divergence among subspecies. The deep divergence between the African subspecies and Asian populations contrasts with the much shallower divergence amongst putative Asian subspecies. Reconciling genomic variation and taxonomy is likely to be a growing challenge in the genomics era.