Dynamical control of square microlaser emission via symmetry classes (original) (raw)
Related papers
Dynamical control of square microlaser emission via its symmetry classes
2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017
A major objective in photonics is to tailor the emission properties of microcavities which is usually achieved with specific cavity shapes. Yet, the dynamical change of the emission properties during operation would often be advantageous. The implementation of such a method is still a challenging issue. We present an effective procedure for the dynamical control of the emission lobes which relies on the selection of a specific coherent superposition of degenerate modes belonging to different symmetry classes. It is generally applicable to systems exhibiting pairs of degenerate modes. We explored it experimentally and analytically with organic square microlasers, which emit narrow lobes parallel to their sidewalls. By means of the pump polarization, emission lobes are switched on and off selectively with an extinction ratio better than 1/50.
Dynamical control of the emission of a square microlaser via symmetry classes
Physical review, 2018
A major objective in photonics is to tailor the emission properties of microcavities which is usually achieved with specific cavity shapes. Yet, the dynamical change of the emission properties during operation would often be advantageous. The implementation of such a method is still a challenging issue. We present an effective procedure for the dynamical control of the emission lobes which relies on the selection of a specific coherent superposition of degenerate modes belonging to different symmetry classes. It is generally applicable to systems exhibiting pairs of degenerate modes. We explored it experimentally and analytically with organic square microlasers, which emit narrow lobes parallel to their sidewalls. By means of the pump polarization, emission lobes are switched on and off selectively with an extinction ratio better than 1/50.
Origin of emission from square-shaped organic microlasers
Europhys. Lett., 2016
The emission from open cavities with non-integrable features remains a challenging problem of practical as well as fundamental relevance. Square-shaped dielectric microcavities provide a favorable case study with generic implications for other polygonal resonators. We report on a joint experimental and theoretical study of square-shaped organic microlasers exhibiting a far-field emission that is strongly concentrated in the directions parallel to the side walls of the cavity. A semiclassical model for the far-field distributions is developed that is in agreement with even fine features of the experimental findings. Comparison of the model calculations with the experimental data allows the precise identification of the lasing modes and their emission mechanisms, providing strong support for a physically intuitive ray-dynamical interpretation. Special attention is paid to the role of diffraction and the finite side length.
IEEE Journal of Selected Topics in Quantum Electronics, 2000
Achieving single-mode operation and highly directional (preferably unidirectional) in-plane light output from whispering-gallery (WG) mode semiconductor microdisk resonators without seriously degrading the mode Q-factor challenges designers of low-threshold microlasers. To address this problem, basic design rules to tune the spectral and emission characteristics of micro-scale optical cavity structures with nanoscale features by tailoring their geometry are formulated and discussed in this paper. The validity and usefulness of these rules is demonstrated by reviewing a number of previously studied cavity shapes with global and local deformations. The rules provide leads to novel improved WG-mode cavity designs, two of which are presented: a cross-shaped photonic molecule with introduced asymmetry and a photonic-crystal-assisted microdisk resonator. Both these designs yield degenerate mode splitting, as well as Qfactor enhancement and directional light output of one of the split modes.
Polarisation rotation in resonant emission of semiconductor microcavities
physica status solidi (a), 2003
We present the semi-classical theory of the non-linear propagation of polarized light in semiconductor microcavities. This formalism explains the mysterious rotation of the polarization plane of light emitted by a microcavity in the regime of stimulated scattering observed recently. The model describes the stimulated four-wave mixing in microcavities. We show that the exciton spin-splitting induced by the polarized pumping is responsible for giant resonant Faraday rotation of the polarization plane of light emitted by the cavity.
Phase space engineering in optical microcavities II. controlling the far-field
2010 12th International Conference on Transparent Optical Networks, 2010
Optical microcavities have received much attention over the last decade from different research fields ranging from fundamental issues of cavity QED to specific applications such as microlasers and biosensors. A major issue in the latter applications is the difficulty to obtain directional emission of light in the far-field while keeping high energy densities inside the cavity (i.e. high quality factor). To improve our understanding of these systems, we have studied the annular cavity (a dielectric disk with a circular hole), where the distance cavity-hole centers d is used as a parameter to alter the properties of cavity resonances. We present results showing how one can affect the directionality of the far-field while preserving the uniformity (hence the quality factor) of the near-field simply by increasing the value of d. Interestingly, the transition between a uniform near-and far-field to a uniform near-and directional far-field is rather abrupt. We can explain this behavior quite nicely with a simple model, supported by full numerical calculations, and we predict that the effect will also be found in a large class of eigenmodes of the cavity.
Localized lasing modes of triangular organic microlasers
We investigated experimentally the ray-wave correspondence in organic microlasers of various triangular shapes. Triangular billiards are of interest since they are the simplest cases of polygonal billiards and the existence and properties of periodic orbits in triangles are not yet fully understood. The microlasers with symmetric shapes that were investigated exhibited states localized on simple periodic orbits, and their lasing characteristics like spectra and far-field distributions could be well explained by the properties of the periodic orbits. Furthermore, asymmetric triangles that do not feature simple periodic orbits were studied. Their lasing properties were found to be more complicated and could not be explained by periodic orbits.
Proceedings of SPIE - The International Society for Optical Engineering, 2007
Photonic molecules, named by analogy with chemical molecules, are clusters of closely located electromagnetically interacting microcavities or "photonic atoms". As two or several microcavities are brought close together, their optical modes interact, and a rich spectrum of photonic molecule supermodes emerges, which depends both on geometrical and material properties of individual cavities and on their mutual interactions. Here, we discuss ways of controllable manipulation of photonic molecule supermodes, which improve or add new functionalities to microcavity-based optical components. We present several optimally-tuned photonic molecule designs for lowering thresholds of semiconductor microlasers, producing directional light emission, enhancing sensitivity of microcavity-based bio(chemical)sensors, and optimizing electromagnetic energy transfer around bends of coupled-cavity waveguides. Photonic molecules composed of identical microcavities as well as of microcavities with various degrees of size or material detuning are discussed. Microwave experiments on scaled photonic molecule structures are currently under way to confirm our theoretical predictions. /sveta2004 Corresponding single-disk characteristics are plotted for comparison (straight lines). (b) The magnetic field profile of the Qenhanced OE -supermode of the size-mismatched double-disk photonic molecule (R 2 =1.065 μm).