Genome-wide normalized score: a novel algorithm to detect fetal trisomy 21 during non-invasive prenatal testing (original) (raw)

Non-Invasive Prenatal Detection of Trisomy 21 Using Tandem Single Nucleotide Polymorphisms

PLOS One, 2010

Background: Screening tests for Trisomy 21 (T21), also known as Down syndrome, are routinely performed for the majority of pregnant women. However, current tests rely on either evaluating non-specific markers, which lead to false negative and false positive results, or on invasive tests, which while highly accurate, are expensive and carry a risk of fetal loss. We outline a novel, rapid, highly sensitive, and targeted approach to non-invasively detect fetal T21 using maternal plasma DNA.

Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting

American Journal of Obstetrics and Gynecology, 2011

van den Boom, DPhil OBJECTIVE: We sought to evaluate a multiplexed massively parallel shotgun sequencing assay for noninvasive trisomy 21 detection using circulating cell-free fetal DNA. STUDY DESIGN: Sample multiplexing and cost-optimized reagents were evaluated as improvements to a noninvasive fetal trisomy 21 detection assay. A total of 480 plasma samples from high-risk pregnant women were employed.

Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study

BMJ, 2011

To validate the clinical efficacy and practical feasibility of massively parallel maternal plasma DNA sequencing to screen for fetal trisomy 21 among high risk pregnancies clinically indicated for amniocentesis or chorionic villus sampling. Diagnostic accuracy validated against full karyotyping, using prospectively collected or archived maternal plasma samples. Prenatal diagnostic units in Hong Kong, United Kingdom, and the Netherlands. 753 pregnant women at high risk for fetal trisomy 21 who underwent definitive diagnosis by full karyotyping, of whom 86 had a fetus with trisomy 21. Intervention Multiplexed massively parallel sequencing of DNA molecules in maternal plasma according to two protocols with different levels of sample throughput: 2-plex and 8-plex sequencing. Proportion of DNA molecules that originated from chromosome 21. A trisomy 21 fetus was diagnosed when the z score for the proportion of chromosome 21 DNA molecules was >3. Diagnostic sensitivity, specificity, positive predictive value, and negative predictive value were calculated for trisomy 21 detection. Results were available from 753 pregnancies with the 8-plex sequencing protocol and from 314 pregnancies with the 2-plex protocol. The performance of the 2-plex protocol was superior to that of the 8-plex protocol. With the 2-plex protocol, trisomy 21 fetuses were detected at 100% sensitivity and 97.9% specificity, which resulted in a positive predictive value of 96.6% and negative predictive value of 100%. The 8-plex protocol detected 79.1% of the trisomy 21 fetuses and 98.9% specificity, giving a positive predictive value of 91.9% and negative predictive value of 96.9%. Multiplexed maternal plasma DNA sequencing analysis could be used to rule out fetal trisomy 21 among high risk pregnancies. If referrals for amniocentesis or chorionic villus sampling were based on the sequencing test results, about 98% of the invasive diagnostic procedures could be avoided.

Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18

American Journal of Obstetrics and Gynecology, 2012

We sought to evaluate performance of a noninvasive prenatal test for fetal trisomy 21 (T21) and trisomy 18 (T18). STUDY DESIGN: A multicenter cohort study was performed whereby cell-free DNA from maternal plasma was analyzed. Chromosomeselective sequencing on chromosomes 21 and 18 was performed with reporting of an aneuploidy risk (High Risk or Low Risk) for each subject. RESULTS: Of the 81 T21 cases, all were classified as High Risk for T21 and there was 1 false-positive result among the 2888 normal cases, for a sensitivity of 100% (95% confidence interval [CI], 95.5-100%) and a false-positive rate of 0.03% (95% CI, 0.002-0.20%). Of the 38 T18 cases, 37 were classified as High Risk and there were 2 false-positive results among the 2888 normal cases, for a sensitivity of 97.4% (95% CI, 86.5-99.9%) and a false-positive rate of 0.07% (95% CI, 0.02-0.25%). CONCLUSION: Chromosome-selective sequencing of cell-free DNA and application of an individualized risk algorithm is effective in the detection of fetal T21 and T18.

Cell-Free DNA Analysis of Targeted Genomic Regions in Maternal Plasma for Non-Invasive Prenatal Testing of Trisomy 21, Trisomy 18, Trisomy 13 and Fetal Sex

Clinical chemistry, 2016

There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%-100%) cases of trisomy 21, 16/16 (95% CI, 79.4%-100%) cases of trisomy 18, 5/5 (95% CI, 47.8%-100%) cases...

Could Digital PCR Be an Alternative as a Non-Invasive Prenatal Test for Trisomy 21: A Proof of Concept Study

PloS one, 2016

NIPT for fetal aneuploidy by digital PCR has been hampered by the large number of PCR reactions needed to meet statistical requirements, preventing clinical application. Here, we designed an octoplex droplet digital PCR (ddPCR) assay which allows increasing the number of available targets and thus overcomes statistical obstacles. After technical optimization of the multiplex PCR on mixtures of trisomic and euploid DNA, we performed a validation study on samples of plasma DNA from 213 pregnant women. Molecular counting of circulating cell-free DNA was performed using a mix of hydrolysis probes targeting chromosome 21 and a reference chromosome. The results of our validation experiments showed that ddPCR detected trisomy 21 even when the sample's trisomic DNA content is as low as 5%. In a validation study of plasma samples from 213 pregnant women, ddPCR discriminated clearly between the trisomy 21 and the euploidy groups. Our results demonstrate that digital PCR can meet the requi...

Rapid non-invasive prenatal screening test for trisomy 21 based on digital droplet PCR

Scientific Reports, 2023

Non-invasive prenatal tests for the detection of fetal aneuploidies are predominantly based on the analysis of cell-free DNA (cfDNA) from the plasma of pregnant women by next-generation sequencing. The development of alternative tests for routine genetic laboratories is therefore desirable. Multiplex digital droplet PCR was used to detect 16 amplicons from chromosome 21 and 16 amplicons from chromosome 18 as the reference. Two fluorescently labeled lock nucleic acid probes were used for the detection of reaction products. The required accuracy was achieved by examining 12 chips from each patient using Stilla technology. The plasma cfDNA of 26 pregnant women with euploid pregnancies and 16 plasma samples from pregnancies with trisomy 21 were analyzed to determine the cutoff value for sample classification. The test was validated in a blind study on 30 plasma samples from pregnant patients with a risk for trisomy 21 ranging from 1:4 to 1:801. The results were in complete agreement with the results of the invasive diagnostic procedure (sensitivity, specificity, PPV, and NPV of 100%). Low cost, and speed of analysis make it a potential screening method for implementation into the clinical workflow to support the combined biochemical and ultrasound results indicating a high risk for trisomy 21.

Noninvasive prenatal diagnosis of trisomy 21, 18 and 13 using cel – free fetal DNA

Ginekologia polska

Trisomy 21, 18 and 13 are the most common trisomies diagnosed in newborns. Screening methods consist of ultrasound and maternal serum markers. High risk for fetal aneuploidies is an indication for routine karyotyping, which requires collection of fetal tissue through amniocentesis or chorionic villous sampling. They are invasive procedures and carry a potential risk of miscarriage. The discovery of cell free fetal DNA (cffDNA) in maternal blood offered new opportunities for noninvasive prenatal diagnosis. The fraction of cell-free fetal DNA in total pool of cell-free DNA in maternal plasma is very low, therefore the analysis of cffDNA is very challenging. The introduction of massive parallel sequencing has enabled the application of noninvasive prenatal testing in the clinical practice and a variety of recent studies have proven its high efficacy in diagnosing common aneuploidies.