MECHANICAL AND THERMOMECHANICAL PROPERTIES OF CARBON FIBRE REINFORCED THERMOPLASTIC COMPOSITE FABRICATED USING FUSED DEPOSITION MODELLING (FDM) METHOD: A REVIEW (original) (raw)
Related papers
Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.
Effect of carbon fibre on reinforcement of thermoplastics using FDM and RSM
Journal of Thermoplastic Composite Materials, 2019
Continuous fibre-reinforced composites have significant industrial importance and usage. However, they are limited by design considerations and high-cost manufacturing operations. This article presents a way forward to utilize Fused Deposition Modelling – a 3D printing technique – to manufacture continuous carbon fibre-reinforced thermoplastics. Several parameters including number of reinforced layers, material impact and interlayer gap have been investigated and optimized using response surface method. Successful incorporation of modified novel nozzle design in a dual nozzle setup resulted in the realization of controlled manufacturing of continuously reinforced composites leading to reinforced yet smooth surface finished samples. Several samples were made, and mechanical testing, parameter optimization, strength calculations and fracture analysis were carried out. For polylactic acid (PLA), tensile strength of 112 MPa and flexural strength of 164 MPA were achieved – an almost 3 ti...
MECHANICAL PROPERTIES OF 3D PRINTED FIBER REINFORCED THERMOPLASTIC
ASME 2019 International Mechanical Engineering Congress and Exposition, 2019
3D printed composites is a relatively new and untested market in the composites industry. 3D printing in general is becoming a widely used manufacturing method because of its ease, versatile capabilities, and consistency. Recent improvement in 3D printing enables 3D printing of composites fibers in any given direction. In this study, continuous carbon fiber onyx samples were manufactured using Markforged X7 3D printers. Samples with three different fiber orientations were manufactured to determine all elastic properties. The results show that while the properties are lower than high strength CFRPs, there is high potential for the use of 3D printed composites upon improving the matrix properties as well as the bonding between fiber and matrix.
Journal of Composites Science
The most common method to fabricate both simple and complex structures in the additive manufacturing process is fused deposition modeling (FDM). Many researchers have studied the strengthening of FDM components by adding short carbon fibers (CF) or by reinforcing solid carbon fiber rods. In the current research, we sought to enhance the mechanical properties of FDM components by adding bioinspired solid CF rods during the fabrication process. An effective bonding interface of bioinspired CF rods and polylactic acid (PLA) was achieved by triangular interlocking sutures and by employing synthetic glue as the binding agent. In particular, the tensile strength of solid CF rod reinforced PLA samples was studied. Critical parameters such as layer thickness, extruder temperature, extruder speed, and shell thickness were considered for optimization. Significant process parameters were identified through leverage plots using the response surface methodology (RSM). The optimum parameters were...
The continuous carbon fiber-reinforced thermoplastic (CFRTP) printing process has been used more widely in recent years and is an alternative production method, especially in sectors such as aviation, automotive, prototyping, medical applications, and aerospace. Although additive manufacturing reduces the design limitations and makes it easier to manufacture, it is one of the disadvantages of this method: it has relatively low thermal and mechanical properties compared to standard production techniques. Therefore, in this study, printing parameters such as nozzle temperature, printing speed, layer thickness, and heated bed temperatures were investigated for fused deposition modeling. In this regard, a polymer impregnation line based on the melt impregnation technique was utilized to obtain CFRTP filaments using polylactic acid (PLA) and 3K carbon fiber. Obtained filaments were then used to print three-point bending test samples in order to investigate mechanical performance. The test result showed flexural strength between 108 and 224 MPa and flexural modulus between 9.67 and 17.69 GPa with a 23% fiber ratio. Results from this study proclaim that CFRTPs manufactured with this method and optimized printing parameters have great potential for implementing future production methods.
Materials
3D printing allows controlled deposition of composite components, which the user defines by the modification of the printing parameters. The article demonstrates that all observed printing parameters (infill type, infill orientation) influence the tensile test results of nylon reinforced with chopped carbon fiber. The highest tensile strength obtains specimens with the maximum number of walls around the circumference. The plastic region of the tensile diagram differs significantly with the change of material orientation in the structure, as the specimens with material deposited 45/−45 to the load axis have four times greater tensile strains and 20% higher tensile stresses than 0/90. The assessment of results reveals the significant difference between deformations at break and permanent deformations. In addition, the permanent lateral strain reaches up to 20%. Finally, the article consists of a brief assessment of the printing parameters (printing time, weight) of individual series. ...
This study investigated the effects of different heat treatments on continuous fiberreinforced thermoplastic (CFRTP) 's. CFRTP composite is produced using fused deposition modeling (FDM), which is one of the additive manufacturing methods. Polylactic acid (PLA) was used as a matrix, and carbon fibers (3K) were utilized as reinforcement material. First, CFRTP filament was produced on a specially designed melt impregnation line. Afterward, test samples were manufactured via a conventional 3D printer. Then, heat treatments (re-melting in salt, microwave oven, oven) were applied to the produced samples, and the effects of these processes on mechanical properties were investigated. Three-point bending tests were used to investigate the mechanical properties of the test samples. As a result of the heat treatments applied to the CFRTP specimens, flexural stresses between 200 and 220 MPa was achieved. The highest bending stress was obtained by re-melting in salt. As a result of the heat treatments, the stress values are similar, but the re-melting in salt application exhibited a more rigid behavior.
International Journal of Fatigue, 2019
Additive manufacturing (AM) technologies have been applied with success in many applications, being fused deposition modelling (FDM) the most widely used AM technique for fabricating thermoplastic pieces. The thermoplastic parts made by FDM present lack of strength and low stiffness, as required for fully functional and loadbearing parts. Due to this restriction, a new technology to reinforce with fibres the thermoplastic filaments was developed in the last years. Continuous fibre reinforced thermoplastic composites (CFRTPC) printers are taking this technology to a whole new level in terms of efficient production and mechanical properties. Static mechanical properties, as well as fatigue behaviour, were studied since in these types of loads a wide range of engineering dynamic applications can be envisaged. Tensile tests were performed to characterise the static mechanical properties. Fatigue tests were done to analyse the durability behaviour of the FDM composite materials, and the fracture surface was analysed by SEM microscopy. The results showed that carbon fibre isotropic layers had the higher ultimate tensile stress, with 165 MPa. From fatigue tests, stress vs. number of cycles curves (S vs Nf) in the temporary life zone were obtained. It is observed from the results that specimens with nylon matrix, triangular filling pattern and matrix density of 20%, reinforced with carbon fibre at 0-degrees, showed better fatigue performance, increasing significantly the number of cycles before rupture of the specimen. The parameters for the Basquin's equation were found (= •), with A=206 MPa, and b=-0,039. Accordingly, mechanical characterization of continuous fibre reinforced thermoplastic composites was investigated, showing the potential use as a composite material for engineering applications.
An investigation into 3D printing of fibre reinforced thermoplastic composites
Additive Manufacturing, 2018
Fused filament fabrication (FFF) is a 3D printing technique which allows layer-by-layer build-up of a part by the deposition of thermoplastic material through a nozzle. The technique allows for complex shapes to be made with a degree of design freedom unachievable with traditional manufacturing methods. However, the mechanical properties of the thermoplastic materials used are low compared to common engineering materials. In this work, composite 3D printing feedstocks for FFF are investigated, wherein carbon fibres are embedded into a thermoplastic matrix to increase strength and stiffness. First, the key processing parameters for FFF are reviewed, showing how fibres alter the printing dynamics by changing the viscosity and the thermal profile of the printed material. The state-of-the-art in composite 3D printing is presented, showing a distinction between short fibre feedstocks versus continuous fibre feedstocks. An experimental study was performed to benchmark these two methods. It is found that printing of continuous carbon fibres using the MarkOne printer gives significant increases in performance over unreinforced thermoplastics, with mechanical properties in the same order of magnitude of typical unidirectional epoxy matrix composites. The method, however, is limited in design freedom as the brittle continuous carbon fibres cannot be deposited freely through small steering radii and sharp angles. Filaments with embedded short carbon microfibres (∼100 μm) show better print capabilities and are suitable for use with standard printing methods, but only offer a slight increase in mechanical properties over the pure thermoplastic properties. It is hypothesized that increasing the fibre length in short fibre filament is expected to lead to increased mechanical properties, potentially approaching those of continuous fibre composites, whilst keeping the high degree of design freedom of the FFF process.
Volume 1: Processing, 2015
Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of popular AM techniques, is most widely used method for manufacturing of plastic materials. Due to the poor strength properties of pure plastic materials, there is a critical need to improve mechanical properties for FDMfabricated pure plastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form carbon fiber reinforced plastic (CFRP) composites. The investigation in this paper is going to test if the properties of CFRP composites part will be enhanced compared with pure plastic part made by FDM. There are three major steps in this paper including producing thermoplastic matrix CFRP composites filaments extruded after blending plastic pellets and carbon fiber powder, printing parts in FDM process, and conducting tensile test. Effects of carbon fiber content and length on the mechanical properties (tensile strength, Young's modulus, toughness, ductility, and yield strength) of specimens are investigated. This investigation will also provide guidance for future investigations of fabricating thermoset matrix CFRP composites by AM techniques.