Robustness of tungsten single atom tips to thermal treatment and air exposure (original) (raw)

Ultrasharp tungsten tips—characterization and nondestructive cleaning

Ultramicroscopy, 2012

We study the treatment of ultrasharp tungsten tips used for applications in nanoscience and introduce a fast and simple method for estimation of the tip radius using a single measurement of the autoemission current. The method is based on a detailed investigation of the influence of an arrangement of electrodes on the electric field layout in close proximity of the tip apex. The electric field was calculated using Monte Carlo Floating Random Walk algorithm. The most frequently used cleaning procedures (heating the whole tip to high temperature, electron bombardment and selfsputtering) were investigated by electrical measurements and microscopy techniques (SEM, TEM) and the results of the particular methods are compared. We report on the effectiveness and limiting conditions of the cleaning methods with respect to the damage they cause to the tip apex.

Field ion microscope evaluation of tungsten nanotip shape using He and Ne imaging gases

Ultramicroscopy, 2012

Field ion microscopy (FIM) using neon imaging gas was used to evaluate a W(111) nanotip shape during a nitrogen assisted etching and evaporation process. Using appropriate etching parameters a narrow ring of atoms centered about the tip axis appears in a helium generated image. Etching of tungsten atoms continues exclusively on the outside of this well-defined ring. By replacing helium imaging gas with neon, normally inaccessible crystal structure of a tip apex is revealed. Comparison of the original W(111) tip (before etching) and partly etched tip shows no atomic changes at the tip apex revealing extraordinarily spatially selective etching properties of the etching process. This observation is an important step towards a detailed understanding of the nitrogen assisted etching and evaporation process and will lead to better control over atomically defined tip shapes.

Reproducible Electrochemical Etching of Tungsten Probe Tips

Nano Letters, 2002

An electrochemical procedure in KOH electrolyte has been developed to reproducibly produce ∼5 nm radius tungsten probe tips. It has been found that a spurious electrochemical etching process, driven by the natural potential difference between an Ir electrode and the W tip, causes rapid tip blunting at the end of the electrochemical etching period. By electrically reversing this potential difference within 500 ns following tip separation, the blunting process is eliminated yielding sharp tips with varying cone angles.

Development and Comparative Analysis of Electrochemically Etched Tungsten Tips for Quartz Tuning Fork Sensor

Micromachines, 2021

Quartz Tuning Fork (QTF) based sensors are used for Scanning Probe Microscopes (SPM), in particular for near-field scanning optical microscopy. Highly sharp Tungsten (W) tips with larger cone angles and less tip diameter are critical for SPM instead of platinum and iridium (Pt/Ir) tips due to their high-quality factor, conductivity, mechanical stability, durability and production at low cost. Tungsten is chosen for its ease of electrochemical etching, yielding high-aspect ratio, sharp tips with tens of nanometer end diameters, while using simple etching circuits and basic electrolyte chemistry. Moreover, the resolution of the SPM images is observed to be associated with the cone angle of the SPM tip, therefore Atomic-Resolution Imaging is obtained with greater cone angles. Here, the goal is to chemically etch W to the smallest possible tip apex diameters. Tips with greater cone angles are produced by the custom etching procedures, which have proved superior in producing high quality...

Preparation and characterization of electrochemically etched W tips for STM

Measurement Science and Technology, 1999

Abstract. We have investigated methods for cleaning dc-etched polycrystalline tungsten tips for scanning tunnelling microscopy (STM). The cleaning methods include Ar-ion sputtering, heating, chemical treatments and Ne-ion self-sputtering. We correlate transmission electron microscopy images of the tip, field-emission data from the tip and images of a clean Cu (111) surface to find an optimum procedure for STM imaging. Clean and sharp tips are made by sputtering, combined with careful heating by electron bombardment. We found that ...

Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

Scientific reports, 2014

The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments.

Fabrication and Study of Micro Monolithic Tungsten Ball Tips for Micro/Nano-CMM Probes

Micromachines, 2018

Micro ball tips with high precision, small diameter, and high stiffness stems are required to measure microstructures with high aspect ratio. Existing ball tips cannot meet such demands because of their weak qualities. This study used an arc-discharge melting method to fabricate a micro monolithic tungsten ball tip on a tungsten stylus. The principles of arc discharge and surface tension phenomenon were introduced. The experimental setup was designed and established. Appropriate process parameters, such as impulse voltage, electro discharge time, and discharge gap were determined. Experimental results showed that a ball tip of approximately 60 µm in diameter with less than 0.6 µm roundness error and 0.6 µm center offset could be realized on a 100 µm-diameter tungsten wire. The fabricated micro ball tip was installed on a homemade probe, touched by high-precision gauge blocks in different directions. A repeatability of 41 nm ( = 2) was obtained. Several interesting phenomena in the b...

Synthesis of tungsten oxide tapered needles with nanotips

Journal of Crystal Growth, 2007

Tungsten oxide tapered needles with nanotips were synthesized on a large scale by reacting tungsten nanopowders with hydrous nickel nitrate in hydrogen atmosphere. The resultant tungsten oxide needles have lengths more than 100 mm, root diameters of several hundred nanometers and tip diameters of several nanometers, showing a perfectly axisymmetric configuration. HRTEM and SAED analyses showed that the synthesized tungsten oxide tapered needles have a single-crystalline structure with growth direction of [0 1 0]. The effects of the experimental conditions (the ratio between tungsten and hydrous nickel nitrate, the size of tungsten powders, and the reaction atmosphere) on the morphology of the products were systematically investigated. It was found that tungsten oxide nanowires, submicro-/ micro-whiskers and microtubules could be facilely obtained under different experimental conditions. The unique configuration and the single-crystal structure of the tapered needles may make them a potential candidate for field emitters and probing tips. r