Assessment of Indoor-Outdoor Particulate Matter Air Pollution: A Review (original) (raw)

Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation

International Journal of Environmental Research and Public Health, 2021

Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and c...

Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project

Sustainability

Despite the progress made in recent years, reliable modeling of indoor air quality is still far from being obtained. This requires better chemical characterization of the pollutants and airflow physics included in forecasting tools, for which field observations conducted simultaneously indoors and outdoors are essential. The project “Integrated Evaluation of Indoor Particulate Exposure” (VIEPI) aimed at evaluating indoor air quality and exposure to particulate matter (PM) of humans in workplaces. VIEPI ran from February 2016 to December 2019 and included both numerical simulations and field campaigns carried out in universities and research environments located in urban and non-urban sites in the metropolitan area of Rome (Italy). VIEPI focused on the role played by micrometeorology and indoor airflow characteristics in determining indoor PM concentration. Short- and long-term study periods captured diurnal, weekly, and seasonal variability of airflow and PM concentration. Chemical ...

Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study

Scandinavian Journal of Work Environment Health, 2004

OBJECTIVES: This study assessed the source contributions to the mass concentrations of fine particles (PM2.5) in personal exposures and in residential indoor, residential outdoor, and workplace indoor microenvironments of the nonsmoking adult population unexposed to environmental tobacco smoke in Helsinki, Finland.METHODS: The elemental composition of 48-hour personal exposure and residential indoor, residential outdoor, and workplace indoor PM2.5 was analyzed by energy-dispersive X-ray fluorescence spectrometry for 76 participants not exposed to environmental tobacco smoke and 102 participating residences with no smoking in Helsinki as a part of the EXPOLIS study. Subsequently, a principal component analysis was used to identify the emission sources of PM2.5-bound elements and black smoke in each microenvironment, and this information was used to identify the corresponding sources in personal exposures. Finally, source reconstruction was done to determine the relative contributions of each source type to the total PM2.5 mass concentrations.RESULTS: Inorganic secondary particles, primary combustion, and soil were the dominant source types for the PM2.5 mass concentration in all the microenvironments and personal exposures. The ratio of the residential indoor-to-outdoor PM2.5 concentration was close to unity, but the corresponding elemental ratios and source contributions varied. Resuspension of soil dust tracked indoors was a much larger contributor to residential and workplace indoor PM2.5 than soil dust to residential outdoor PM2.5. Source contributions to personal PM2.5 exposures were best approximated by data from residential and workplace indoor microenvironments.CONCLUSIONS: Population exposure assessment of PM2.5, based on outdoor fixed-site monitoring, overestimates exposures to outdoor sources like traffic and long-range transport and does not account for the contribution of significant indoor sources.