Serial reversal learning and cognitive flexibility in two species of Neotropical parrots (Diopsittaca nobilis and Pionites melanocephala (original) (raw)
A B S T R A C T Serial reversal learning of colour discriminations was assessed as an index of cognitive flexibility in two captive species of Neotropical parrots. Both species showed similar performances across serial reversals and no between species differences were observed. In a second task subjects' performances were assessed after they experienced either a low or high pre-reversal learning criterion. If reversal performances improve through processes of as-sociative learning, a high pre-reversal criterion is expected to strengthen previously learned associations and hence impede post-reversal performances. Conversely, highly reinforced associations may facilitate the use of conditional rules that can be generalised across reversals and improve post-reversal performances. We found that high criterion subjects made fewer post-reversal errors and required fewer trials to reach criterion, than low criterion subjects. Red-shouldered macaws and black-headed caiques may therefore demonstrate capacities for solving serial reversal problems by applying conditional rules, rather than learning solely by associative processes. Such performances coincide with findings in great apes, but contrast with findings in monkeys and prosimians, which generally show impaired reversal performances when trained to a highly rigorous pre-reversal criterion. Overall, these findings suggest an evolutionary convergence of cognitive flexibility between parrots and non-human great apes.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact