Hypersphere World-Universe Model. Tribute to Classical Physics (original) (raw)
Abstract
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses; models the origin, evolution, and structure of the World and Macroobjects; provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (105)
- Netchitailo, V.S. (2015) 5D World-Universe Model Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25-34. https://doi.org/10.4236/jhepgc.2015.11003
- Netchitailo, V.S. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71. https://doi.org/10.4236/jhepgc.2015.12006
- Netchitailo, V.S. (2016) 5D World-Universe Model. Neutrinos. The World. Journal of High Energy Physics, Gravitation and Cosmology, 2, 1-18. https://doi.org/10.4236/jhepgc.2016.21001
- Netchitailo, V.S. (2016) 5D World-Universe Model. Gravitation. Journal of High Energy Physics, Gravitation and Cosmology, 2, 328-343. https://doi.org/10.4236/jhepgc.2016.23031
- Netchitailo, V.S. (2016) Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 2, 593-632. https://doi.org/10.4236/jhepgc.2016.24052
- Netchitailo, V.S. (2017) Burst Astrophysics. Journal of High Energy Physics, Gravi- tation and Cosmology, 3, 157-166. https://doi.org/10.4236/jhepgc.2017.32016
- Netchitailo, V.S. (2017) Mathematical Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 3, 415-437. https://doi.org/10.4236/jhepgc.2017.33033
- Netchitailo, V.S. (2017) Astrophysics: Macroobject Shell Model. Journal of High Energy Physics, Gravitation and Cosmology, 3, 776-790. https://doi.org/10.4236/jhepgc.2017.34057 Journal of High Energy Physics, Gravitation and Cosmology
- Netchitailo, V.S. (2018) Analysis of Maxwell's Equations. Cosmic Magnetism. Jour- nal of High Energy Physics, Gravitation and Cosmology, 4, 1-7. https://doi.org/10.4236/jhepgc.2018.41001
- Maxwell, J.C. (1860) Illustrations of the Dynamical Theory of Gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 20, 21-37. https://doi.org/10.1080/14786446008642902
- Maxwell, J.C. (1861) On Physical Lines of Force. Philosophical Magazine, 90, 11-23. https://doi.org/10.1080/14786431003659180
- Kohlrausch, R. and Weber, W. (1857) Elektrodynamische Maaßbestimmungen: In- sbesondere Zuruckfuḧrung der Stromintensitaẗs-Messungen auf mechanisches Maass. On the Amount of Electricity which Flows through the Cross-Section of the Circuit in Galvanic Currents (Translated by Susan P. Johnson and edited by Lau- rence Hecht). http://ppp.unipv.it/Collana/Pages/Libri/Saggi/Volta%20and%20the%20History%20 of%20Electricity/V%26H%20Sect3/V%26H%20287-297.pdf
- Fizeau, H. (1849) Comptes Rendus: Hebdomadaires de scéances de l'Academie de Sciences (Paris, Vol. 29 [July-December 1849], pp. 90-92).
- Maxwell, J.C. (1865) A Dynamical Theory of the Electromagnetic Field. Philosoph- ical Transactions of the Royal Society of London, 155, 459-512. https://doi.org/10.1098/rstl.1865.0008
- Heüman, G.D. (1888) The Rydberg Formula as Presented to Matematiskt-Fysiska förening. https://commons.wikimedia.org/wiki/File:Rydbergformula.jpg
- Thomson, J.J. (1897) Cathode Rays. Philosophical Magazine, 44, 293. http://web.lemoyne.edu/\~giunta/thomson1897.html
- Plank, M. (1901) On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 4, 553. https://web.archive.org/web/20080418002757/http://dbhs.wvusd.k12.ca.us/webdocs /Chem-History/Planck-1901/Planck-1901.html
- MacCullagh, J. (1846) An Essay towards a Dynamical Theory of Crystalline Reflex- ion and Refraction. Transactions of the Royal Irish Academy, 21, 17-50.
- Tesla, N. (1937) Prepared Statement on the 81st Birthday Observance. http://www.institutotesla.org/tech/TeslaGravity.html
- Dirac, P.M. (1951) Is There an Aether? Nature, 168, 906-907.
- Spitzer, L. (1941) The Dynamics of the Interstellar Medium; II. Radiation Pressure. The Astrophysical Journal, 94, 232. https://doi.org/10.1086/144328
- Ignatov, A.M. (1996) Lesage Gravity in Dusty Plasma. Plasma Physics Reports, 22, 58.
- Radzievskii, V.V. and Kagalnikova, I.I. (1960) The Nature of Gravitation. Bulletin of the All-Union Astronomical-Geodetic Society, 26, 3-14.
- Shneiderov, A.J. (1961) On the Internal Temperature of the Earth. Bollettino di Geofisica Teorica ed Applicata, 3, 137.
- Buonomano, V. and Engel, E. (1976) Some Speculations on a Causal Unification of Relativity, Gravitation, and Quantum Mechanics. International Journal of Theoret- ical Physics, 5, 231-246. https://doi.org/10.1007/BF01807095
- Adamut, I.A. (1982) The Screen Effect of the Earth in the TETG. Theory of a Screening Experiment of a Sample Body at the Equator Using the Earth as a Screen. Nuovo Cimento, C5, 189.
- Jaakkola, T. (1996) Action-at-a-Distance and Local Action in Gravitation: Discus- Journal of High Energy Physics, Gravitation and Cosmology sion and Possible Solution of the Dilemma. Apeiron, 3, 61-75.
- Van Flandern, T. (1999) Dark Matter, Missing Planets and New Comets. 2nd Edi- tion, North Atlantic Books, Berkeley, 2-4.
- Edwards, M.R. (2002) Pushing Gravity: New Perspectives on Le Sage's Theory of Gravitation. C. Roy Keys Inc., Montreal.
- Edwards, M.R. (2007) Photon-Graviton Recycling as Cause of Gravitation. Apeiron, 14, 214.
- Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275. https://doi.org/10.1142/S0218271809015904
- Lev, F.M. (2010) Is Gravity an Interaction? Physics Essays, 23, 355.
- Riemann, B. (1854) On the Hypotheses Which Lie at the Bases of Geometry. Trans- lated by William Kingdon Clifford. Nature, Vol. VIII, Nos. 183, 184, pp. 14-17, 36, 37.
- Heaviside, O. (1893) A Gravitational and Electromagnetic Analogy. The Electrician, 31, 81.
- Hoyle, F. and Narlikar, J.V. (1964) A New Theory of Gravitation. Proceedings of the Royal Society of London A, 282, 178. https://doi.org/10.1098/rspa.1964.0227
- Dirac, P.A.M. (1974) Cosmological Models and the Large Numbers Hypothesis. Proceedings of the Royal Society of London A, 338, 439. https://doi.org/10.1098/rspa.1974.0095
- Pereira, M. (2007) Hypergeometrical Universe. In: Smarandache, F. and Christian- to, V., Eds., Quantization in Astrophysics, Brownian Motion and Supersymmetry, MathTiger, Chennai, Tamil Nadu, 391-432.
- Pereira, M. (2007) The Hypergeometrical Standard Model. In: Smarandache, F. and Christianto, V., Eds., Hadron Models and Related New Energy Issues, InfoLearn- Quest Publisher, USA, 382-435.
- Ahmadi, M., et al. (2018) Characterization of the 1S-2S Transition in Antihydrogen. Nature, 557, 71-75.
- Boehm, C., Fayet, P. and Silk, J. (2003) Light and Heavy Dark Matter Particles. ar- Xiv:0311143.
- Arrenberg, S., et al. (2013) Complementarity of Dark Matter Experiments. http://www-public.slac.stanford.edu/snowmass2013/docs/CosmicFrontier/Comple mentarity-27.pdf
- Heeck, J. and Zhang, H. (2013) Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos. Journal of High Energy Physics, 2013, 164. https://doi.org/10.1007/JHEP05(2013)164
- Aoki, M., et al. (2012) Multi-Component Dark Matter Systems and Their Observa- tion Prospects. arXiv: 1207.3318.
- Kusenko, A., Loewenstein, M. and Yanagida, T. (2013) Moduli Dark Matter and the Search for its Decay Line Using Suzaku X-Ray Telescope. Physical Review D, 87, Article ID: 043508. https://doi.org/10.1103/PhysRevD.87.043508
- Feldman, D., Liu, Z., Nath, P. and Peim, G. (2010) Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions. Physical Review D, 81, Article ID: 095017. https://doi.org/10.1103/PhysRevD.81.095017
- Feng, J.L. (2010) Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48, 495-545. Journal of High Energy Physics, Gravitation and Cosmology https://doi.org/10.1146/annurev-astro-082708-101659
- Zurek, K.M. (2009) Multi-Component Dark Matter. arXiv: 0811.4429.
- Spolyar, D., Freese, K. and Gondolo, P. (2007) Dark Matter and the First Stars: A New Phase of Stellar Evolution. arXiv:0705.0521.
- Ripamonti, E. and Abel, T. (2005) The Formation of Primordial Luminous Objects. arXiv:0507130.
- Lee, B.W. and Weinberg, S. (1977) Cosmological Lower Bound on Heavy-Neutrino Masses. Physical Review Letters, 39, 165. https://doi.org/10.1103/PhysRevLett.39.165
- Dicus, D.A., Kolb, E.W. and Teplitz, V.L. (1977) Cosmological Upper Bound on Heavy-Neutrino Lifetimes. Physical Review Letters, 39, 168. https://doi.org/10.1103/PhysRevLett.39.168
- Dicus, D.A., Kolb, E.W. and Teplitz, V.L. (1978) Cosmological Implications of Mas- sive, Unstable Neutrinos. Astrophysical Journal, 221, 327-341. https://doi.org/10.1086/156031
- Gunn, J.E., et al. (1978) Some Astrophysical Consequences of the Existence of a Heavy Stable Neutral Lepton. Astrophysical Journal, 223, 1015-1031. https://doi.org/10.1086/156335
- Stecker, F.W. (1978) The Cosmic Gamma-Ray Background from the Annihilation of Primordial Stable Neutral Heavy Leptons. Astrophysical Journal, 223, 1032-1036. https://doi.org/10.1086/156336
- Zeldovich, Ya.B., Klypin, A.A., Khlopov, M.Yu. and Chechetkin, V.M. (1980) As- trophysical Constraints on the Mass of Heavy Stable Neutral Leptons. Soviet Journal of Nuclear Physics, 31, 664.
- García, R., et al. (2007). Tracking Solar Gravity Modes: The Dynamics of the Solar Core. Science, 316, 1591-1593. https://doi.org/10.1126/science.1140598
- Fossat, E., et al. (2017) Asymptotic g Modes: Evidence for a Rapid Rotation of the Solar Core. Astronomy & Astrophysics, 604, Article No. A40. https://doi.org/10.1051/0004-6361/201730460
- Zhang, J., et al. (2005) Inner Core Differential Motion Confirmed by Earthquake Waveform Doublets. Science, 309, 1357-1360. https://doi.org/10.1126/science.1113193
- Guillot, T., et al. (2018) A Suppression of Differential Rotation in Jupiter's Deep In- terior. Nature, 555, 227-230. https://doi.org/10.1038/nature25775
- Cole, G.H.A. and Woolfson, M.M. (2002) Planetary Science: The Science of Planets around Stars. Institute of Physics Publishing, 36-37, 380-382. https://doi.org/10.1887/075030815X
- Kinver, M. (2009) Global Average Temperature May Hit Record Level in 2010. BBC. Retrieved 22 April 2010.
- Alsop, J.W. (1934) Beam to Kill Army at 200 Miles, Tesla's Claim on 78th Birthday. The New York Herald Tribune. https://en.wikisource.org/wiki/The\_New\_York\_Herald\_Tribune/1934/07/11/Beam\_ to_Kill_Army_at_200_Miles,_Tesla%27s_Claim_on_78th_Birthday
- Dirac, P.A.M. (1937) The Cosmological Constants. Nature, 139, 323. https://doi.org/10.1038/139323a0
- Pontecorvo, B. and Smorodinsky, Y. (1962) The Neutrino and the Density of Matter Journal of High Energy Physics, Gravitation and Cosmology in the Universe. Soviet Physics-JETP, 14, 173-176.
- Kajita, T. (1999) Atmospheric Neutrino Results from Super-Kamiokande and Ka- miokande-Evidence for ν µ Oscillations. Nuclear Physics B-Proceedings Supple- ments, 77, 123-132.
- McDonald, A.B. (2003) Neutrino Properties from Measurements Using Astrophys- ical and Terrestrial Sources. arXiv:0310775.
- Sakharov, A.D. (1968) Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Soviet Physics Doklady, 12, 1040.
- Visser, M. (2002) Sakharov's Induced Gravity: A Modern Perspective. Modern Physics Letters A, 17, 977. https://doi.org/10.1142/S0217732302006886
- Barcelo, C., Liberati, S. and Visser, M. (2011) Analogue Gravity. Living Reviews in Relativity, 14, 3. https://doi.org/10.12942/lrr-2011-3
- Dirac, P.A.M. (1931) Quantized Singularities in the Electromagnetic Field. Pro- ceedings of the Royal Society of London A, 133, 60. http://users.physik.fu-berlin.de/\~kleinert/files/dirac1931.pdf https://doi.org/10.1098/rspa.1931.0130
- Harari, H. (1979) A Schematic Model of Quarks and Leptons. Physics Letters B, 86, 83-86. https://doi.org/10.1016/0370-2693(79)90626-9
- Shupe, M.A. (1979) A Composite Model of Leptons and Quarks. Physics Letters B, 86, 87-92.
- D'Souza, I.A. and Kalman, C.S. (1992) Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. World Scientific, Singapore. https://doi.org/10.1142/1700
- Thompson, D.J. (2003) Gamma Ray Pulsars: Multiwavelength Observations. ar- Xiv:0312272.
- Ansoldi, S., et al. (2015) Teraelectronvolt Pulsed Emission from the Crab Pulsar Detected by MAGIC. arXiv:1510.07048.
- Chen, G., et al. (2015) NuSTAR Observations of the Young, Energetic Radio Pulsar PSR B1509-58. arXiv:1507.08977.
- Ackermann, M., et al. (2013) High-Energy Gamma-Ray Emission from Solar Flares: Summary of Fermi LAT Detections and Analysis of Two M-Class Flares. ar- Xiv:1304.3749.
- Bjerknes, V.F.K. (1906) Fields of Force. Columbia University Press, New York.
- Mansuripur, M. (2012) Nature of Electric and Magnetic Dipoles Gleaned from the Poynting Theorem and the Lorentz Force Law of Classical Electrodynamics. ar- Xiv:1208.0873.
- Michon, G.P. Electromagnetism: Maxwell's Equations and Their Solutions-Numericana. http://www.numericana.com/answer/maxwell.htm
- Brown, K.S. Magnetic Dipoles. http://www.mathpages.com/home/kmath694/kmath694.htm
- Harmuth, H.F. and Lukin, K.A. (2000) Interstellar Propagation of Electromagnetic Signals. Kluwer Academic/Plenum Publishers, New York. https://doi.org/10.1007/978-1-4615-4247-6
- Harmuth, H.F. and Lukin, K.A. (2002) Propagation of Short Electromagnetic Pulses through Nonconducting Media with Electric and Magnetic Dipole Currents. Radio Physics and Radio Astronomy, 7, 362. Journal of High Energy Physics, Gravitation and Cosmology
- Beck, R. and Wielebinski, R. (2013) Magnetic Fields in Galaxies. In: Oswalt, T.D. and Gilmore, G., Eds., Planets, Stars and Stellar Systems, Springer, Dordrecht, 641-723. https://doi.org/10.1007/978-94-007-5612-0\_13
- Han, J.L. (2003) The Large-Scale Magnetic Field Structure of Our Galaxy: Efficiently Deduced from Pulsar Rotation Measures. In: Uyaniker, B., Reich, W. and Wiele- binski, R., Eds., The Magnetized Interstellar Medium, Copernicus GmbH, Katlen- burg-Lindau, 3-12.
- Pitkanen, M. (2015) "Invisible Magnetic Fields" as Dark Magnetic Fields. TGD Di- ary. http://matpitka.blogspot.com/2015/09/invisible-magnetic-fields-as-dark.html?m=0
- Bennett, C.L., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. arXiv:1212.5225.
- Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920. https://doi.org/10.1088/0004-637X/707/2/916
- Fixsen, D.J., et al. (1996) The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set. The Astrophysical Journal, 473, 576-587. https://doi.org/10.1086/178173
- Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (1999) Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS. arXiv:9905128.
- Draine, B.T. and Lazarian, A. (1998) Electric Dipole Radiation from Spinning Dust Grains. The Astrophysical Journal, 508, 157-179. https://doi.org/10.1086/306387
- Finkbeiner, D.P. and Schlegel, D.J. (1999) Interstellar Dust Emission as a CMBR Foreground. arXiv: 9907307.
- Lagache, G., et al. (1999) First Detection of the Warm Ionized Medium Dust Emis- sion. Implication for the Cosmic Far-Infrared Background. arXiv:9901059.
- Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (2000) Detection of a Far IR Excess with DIRBE at 60 and 100 Microns. arXiv:0004175.
- Siegel, P.H. (2002) Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928. https://doi.org/10.1109/22.989974
- Phillips, T.G. and Keene, J. (1992) Submillimeter Astronomy (Heterodyne Spec- troscopy). Proceedings of the IEEE, 80, 1662-1678. https://doi.org/10.1109/5.175248
- Dupac, X., et al. (2003) The Complete Submillimeter Spectrum of NGC 891. ar- Xiv:0305230.
- Aguirre, J.E., et al. (2003) The Spectrum of Integrated Millimeter Flux of the Ma- gellanic Clouds and 30-Doradus from TopHat and DIRBE Data. arXiv:0306425.
- Pope, A., et al. (2006) Using Spitzer to Probe the Nature of Submillimetre Galaxies in GOODS-N. arXiv: 0603409.
- Marshall, J.A., et al. (2007) Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting. arXiv:0707.2962.
- Zyga, L. (2015) Why Do Measurements of the Gravitational Constant Vary So Much? Phys.org. https://phys.org/news/2015-04-gravitational-constant-vary.html
- Gough, D.O. (1981) Solar Interior Structure and Luminosity Variations. Solar Physics, 74, 21-34. https://doi.org/10.1007/BF00151270
- Stanimirovic, S., Altschuler, D., Goldsmith, P. and Salter, C. (2002) Single-Dish Ra- dio Astronomy: Techniques and Applications. ASP Conference Proceedings, 278. Astronomical Society of the Pacific, San Francisco, 251-269.
- Lorimer, D.R., and Kramer, M. (2005) Handbook of Pulsar Astronomy. In: Cam- Journal of High Energy Physics, Gravitation and Cosmology bridge Observing Handbooks for Research Astronomers, Vol. 4, Cambridge Uni- versity Press, Cambridge, New York.
- Keane, E.F., et al. (2016) A Fast Radio Burst Host Galaxy. Nature, 530, 453-456. https://doi.org/10.1038/nature17140