Critical behavior of three-dimensional Ising spin glass models (original) (raw)

Abstract

The user has requested enhancement of the downloaded file. arXiv:cond-mat/0006211v3 [cond-mat.dis-nn] PACS number(s): 75.50.Lk, 64.60.Cn, 05.50.+q

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (58)

  1. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986);
  2. M. Mézard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore 1987);
  3. K. H. Fisher and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge U.K. 1991)
  4. G. Parisi, Phys. Lett. A 73, 203 (1979);
  5. J. Phys. A 13, L115 (1980);
  6. J. Phys. A 13, 1101 (1980);
  7. J. Phys. A 13 1887 (1980).
  8. J. A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London 1993).
  9. See, for example, the following recent papers: M. Palassini and A. P. Young, Phys. Rev. Lett. 83, 5126 (1999);
  10. M. Palassini and A. P. Young, cond-mat/0004485; E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo and F. Zuliani, J. Stat. Phys. 98, 973 (2000);
  11. E. Marinari and G. Parisi, cond-mat/0005047.
  12. K. Gunnarsson et al., Phys. Rev. B 43, 8199 (1991). See also P. Norblad and P. Svendlidh Experiments on Spin Glasses in Spin Glasses and Random Fields, edited by A. P. Young. World Scientific (Singapore, 1997).
  13. C. de Dominicis, I. Kondor and T. Temesvári, Beyond the Sherrington-Kirkpatrick Model in Spin Glasses and Random Fields, edited by A. P. Young. World Scientific (Singapore, 1997).
  14. N. Kawashima and A. P. Young, Phys. Rev B 53, R484 (1996).
  15. D. Iñiguez, G. Parisi and J. J. Ruiz-Lorenzo, J. Phys. A 29, 4337 (1996).
  16. E. Marinari, G. Parisi and J. J. Ruiz-Lorenzo, Phys. Rev. B 58, 14863 (1998).
  17. D. Iñiguez, E. Marinari, G. Parisi and J. J. Ruiz-Lorenzo, J. Phys. A 30, 7337 (1997).
  18. B. A. Berg and W. Janke, Phys. Rev. Lett. 80, 4771 (1998);
  19. W. Janke , B. A. Berg and A. Billoire, Ann. Phys.(Leipzig) 7, 544 (1998).
  20. M. Palassini and Caracciolo, Phys. Rev. Lett. 82, 5128 (1999).
  21. A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).
  22. R. N. Bahtt and A. P. Young, Phys. Rev. Lett. 54, 924 (1985).
  23. R. N. Bahtt and A. P. Young, Phys. Rev. B 37, 5606 (1988).
  24. M. Tesi, E. Janse van Resburg, E. Orlandini and S. G. Whillington, J. Stat. Phys. 82, 155 (1996);
  25. K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).
  26. E. Marinari, Optimized Monte Carlo Methods in Lecture Notes in Physics 501 (Springer-Verlag, Heidelberg, 1998).
  27. E. Marinari, G. Parisi and J. J. Ruiz-Lorenzo, Numerical Simulations of Spin Glass Systems in Spin Glasses and Random Fields, edited by A. P. Young. World Scientific (Singapore, 1997).
  28. F. Cooper, B. Freedman and D. Preston, Nucl. Phys. B210, 210 (1989).
  29. See for instance M.N. Barber in Phase Transitions and Critical Phenomena, vol. 8, edited by C. Domb and J.L. Lebowitz (Academic Press, London, 1983).
  30. M. Lüsher, P. Weisz and U. Wolff, Nucl. Phys. B359 221 (1991);
  31. J.-K. Kim, Phys. Rev. Lett. 70, 1735 (1993);
  32. S. Caracciolo. R. G. Edwards, S. J. Ferreira and A. Sokal, Phys. Rev. Lett. 74, 2969 (1995);
  33. S. Caracciolo. R. G. Edwards, and A. Sokal, Phys. Rev. Lett. 75, 1891 (1995).
  34. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor and A. Muñoz Sudupe, Phys. Lett. B378, 207 (1996);
  35. Nucl. Phys. B483, 707 (1997).
  36. J. Kisker, L. Santen, M: Schreckenberg and H. Rieger, Phys. Rev. B 53, 6418 (1996);
  37. E. Marinari, G. Parisi, J. J. Ruiz-Lorenzo and F. Ritort, Phys. Rev. Lett. 76, 843 (1996);
  38. Y. G. Joh, R. Orbach, G. G. Wood, J. Hammann and E. Vincent, Phys. Rev. Lett. 82, 438 (1999);
  39. G. Parisi, E. Marinari, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo J. Phys. A. 33, 2373 (2000).
  40. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi and J. J. Ruiz-Lorenzo, Phys. Lett. B400, 346 (1997);
  41. Nucl. Phys. B512[FS], 681 (1998) ; Phys. Rev. B58, 2740 (1998).
  42. E. Marinari, V. Martín-Mayor and A. Pagnani, cond-mat/0002327, to be published in Phys. Rev. B.
  43. F. Ritort and M. Sales, cond-mat/0003336.
  44. K. Binder, Z. Phys. B 43, 119 (1981).
  45. E. Marinari, C. Naitza, G. Parisi, M. Picco, F. Ritort and F. Zuliani, Phys. Rev. Lett. 81, 1698 (1998).
  46. J. Pech, A. Tarancon and C. L. Ullod, Comput. Phys. Commun. 106, 10 (1997).
  47. J. J. Ruiz-Lorenzo and C. L. Ullod. Comput. Phys. Commun. 125, 210 (2000).
  48. A. Cruz, J. Pech, A. Tarancón, P. Téllez, C. L. Ullod, C. Ungil, cond-mat/0004080, submitted to Comput. Phys. Commun.
  49. H. G. Ballesteros and V. Martín-Mayor, Phys. Rev. E 58, 6787 (1998).
  50. One of the Schwinger-Dyson equations for a spin glass reads as:
  51. If we denote the coordinates of a given spin (x, y, z) by i ≡ x + yL + zL 2 , the coordinates of the three nearest neighbors (in the three positive directions) are given by: i1 = (i + 1) mod L 3 , i2 = (i + L) mod L 3 and i3 = (i + L 2 ) mod L 3 .
  52. M. Falcioni, E. Marinari, M. L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B108, 331 (1982);
  53. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
  54. A. D. Sokal, Bosonic Algorithms in Quantum Fields on the Computer. Advanced Series on Directions in High Energy Physics, Vol 11, edited by M. Creutz. (World Scientific, Singapore 1992).
  55. We have simulated the two dimensional XY model using the Wolff single cluster algorithm [38]. We have done different runs, near the critical point β ≃ 1.11, on lattice sizes L = 16, 32 and 64, using the spectral density method in the analysis of the data.
  56. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
  57. The leading correction to scaling is given by the universal exponent ω. However, the nonlinear dependence of the scaling fields over the couplings of the Hamiltonian and the analytic part of the free energy provided two sources of additional scaling corrections. Considering for instance the susceptibility, one has that the leading exponents for the analytic scaling-corrections (from each one of the above meantioned sources) are respectively: γ/ν + d -1/ν and γ/ν. In our model they are approximately 4.7 and 2.3 (resp.). These figures are much bigger than our estimate for the ω exponent, which is 0.84(43), so that we check, a posteriori, that they could be safely neglected. We address to Ref. [40] for a detailed study on the analytic scaling-corrections.
  58. J. Salas and A. D. Sokal, cond-mat/9904038 version 1.